Цитологія і генетика 2019, том 53, № 2, 34-42
Cytology and Genetics 2019, том 53, № 2, 124–131, doi: https://www.doi.org/10.3103/S0095452719020087

Вплив збагаченої тромбоцитами плазми на морфогенез та експресію хондрогенних маркерних генів хондроцитоподібними клітинами Nuckeus pulposus щура in vitro

Педаченко Є.Г., Васильєва І.Г., Хижняк М.В., Чопик Н.Г., Олексенко Н.П., Шуба І.М., Цюбко О.І., Галанта О.С., Сніцар Н.Д., Макарова Т.А., Дмитренко А.Б.

ДУ «Iнститут нейрохірургії ім. акад. А.П. Ромоданова АМН України». 04050, вул. Платона Майбороди, 32, Київ, Україна

РЕЗЮМЕ. Целью данной работы было изучить влияние 3, 10, 20% обогащенной тромбоцитами плазмы (ОТП) крысы на морфобиологические характеристики ходроцитоподобных клеток nucleus pulposus (NP) крысы , а также экспрессию хондрогенных генов ACAN, COL II, GPC3, MGP, PTN, ANXA3;VIM in vitro. ОТП 3, 10, 20 % дозозависимо повышает жизнеспособность клеток NP крысы в культуре. Тромбоциты в культурах демонстрируют тропность к бластоподобним клеткам, формируют зону адгезии. При использовании ОТП 20 % на 14 сутки культивирования наблюдается дифференцировка бластоподобных клеток, регистрируются клетки на стадии деления. ОТП дозозависимо предотвращает снижение экспрессии хондрогенных генов. Более эффективной была ОТП 20 %. В этих культурах наблюдалось увеличение экспресии большинства исследованных хондрогенных генов: COL II в 2,9 (Р = 0,002); VIM в 2,1 (Р = 0,0003); ANXA в 2,3 (Р = 0,0003); GPC в 1,4 (Р = 0,0011); PTN в 1,6 (Р = 0,0017);ACAN в 1,2 (Р = 0,0606) раза. 

Метою дослідження було вивчення впливу 3, 10, 20 % збагаченої тромбоцитами плазми (ЗТП) щура на морфобіологічні характеристики хондроцитоподібних клітин nucleus pulposus (NP) щура, а також експресію хондрогених генів ACAN, COL II, GPC3, MGP, PTN, ANXA3; VIM in vitro. ЗТП 3, 10, 20 % дозозалежно підвищує життєздатніть клітин NP щура в культурі. Тромбоцити в культурах демонструють тропність до бластоподібних клітин, формують зону адгезії. При використанні ЗТП 20 % на 14 добу культивування спостерігається диференціювання бластоподібних клітин, реєструються клітини на стадії ділення. ЗТП дозозалежно запобігає зниженню експресії хондрогенних генів. Більш ефективною є ЗТП 20 %. В цих культурах спостерігалось збільшення експресії більшості досліджуваних хондрогенних генів: COL II в 2,9 (Р = 0,002); VIM в 2,1 (Р = 0,0003); ANXA3 в 2,3 (Р = 0,0003); GPC3 в 1,4 (Р = 0,0011); PTN в 1,6 (Р = 0,0017); ACAN в 1,2 (Р = 0,0606) рази.

Ключові слова: збагачена тромбоцитами плазма, ACAN, COL II, GPC3, MGP, PTN, ANXA3;VIM

Цитологія і генетика
2019, том 53, № 2, 34-42

Current Issue
Cytology and Genetics
2019, том 53, № 2, 124–131,
doi: 10.3103/S0095452719020087

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

1. Daly, C., Ghosh, P., Jenkin, G., Oehme, D., and Goldschlager, T., A Review of Animal Models of Intervertebral Disc Degeneration: Pathophysiology, Regeneration, and Translation to the Clinic, Biomed. Res. Int., 2016, vol. 2016. 5952165. https://doi.org/10.1155/2016/5952165

2. Anitua, E. and Padilla, S., Biologic therapies to enhance intervertebral disc repair, Regen. Med., 2018, vol. 13, no. 1, pp. 55–72. https://doi.org/10.2217/rme-2017-0111

3. Fernandes, G. and Yang, S., Application of platelet-rich plasma with stem cells in bone and periodontal tissue engineering, Bone Res., 2016, vol. 4, p. 16036. https://doi.org/10.1038/boneres.2016.36

4. Wang, S., Fan, W., Jia, J., Ma, L., Yu, J., and Wang, C., Is exclusion of leukocytes from platelet-rich plasma (PRP) a better choice for early intervertebral disc regeneration?, Stem Cell Res. Ther., 2018, vol. 9, p. 199. https://doi.org/10.1186/s13287-018-0937-7

5. Oloff, L., Elmi, E., Nelson, J., and Crain, J., Retrospective analysis of the effectiveness of platelet-rich plasma in the treatment of achilles tendinopathy: pretreatment and posttreatment correlation of magnetic resonance imaging and clinical assessment, Foot Ankle Spec., 2015, vol. 8, no. 6, pp. 490–497. https://doi.org/10.1177/1938640015599033

6. Gosens, T., Peerbooms, J.C., van Laar, W., and Oudsten, B.L., Ongoing positive effect of platelet-rich plasma versus corticosteroid injection in lateral epicondylitis: a double-blind randomized controlled trial with 2-year follow-up, Am. J. Sports Med., 2011, vol. 39, no. 6, pp. 1200–1208. https://doi.org/10.1177/0363546510397173

7. Laver, L., Marom, N., Dnyanesh, L., Mei-Dan, O., Espregueira-Mendes, J., and Gobbi, A., PRP for degenerative cartilage disease: a systematic review of clinical studies, Cartilage, 2017, vol. 8, no. 4, pp. 341–364. https://doi.org/10.1177/1947603516670709

8. Kon, E., Buda, R., Filardo, G., Di Martino, A., Timoncini, A., Cenacchi, A., Fornasari, P.M., Giannini, S., and Marcacci, M., Platelet-rich plasma intraarticular knee injections produced favorable results on degenerative cartilage lesions, Knee Surg Sports Traumatol Arthrosc., 2010, vol. 18, no. 4, pp. 472–479. https://doi.org/10.1007/s00167-009-0940-8

9. Kon, E., Filardo, G., Delcogliano, M., Presti, M.L., Russo, A., Bondi, A., Di Martino, A., Cenacchi, A., Fornasari, P.M., and Marcacci, M., Platelet-rich plasma: New clinical application: a pilot study for treatment of jumper’s knee, Injury, 2009, vol. 40, no. 6, pp. 598–603. https://doi.org/10.1016/j.injury.2008.11.026

10. Vannini, F., Di Matteo, B., and Filardo, G., Platelet-rich plasma to treat ankle cartilage pathology - from translational potential to clinical evidence: a systematic review, J. Exp. Orthopaedics, 2015, vol. 2, p. 2. doi.org/ https://doi.org/10.1186/s40634-015-0019-z

11. Louis, M., Magalon, J., Jouve, E., Bonet, C.E., Mattei, J.C., Chagnaud, C., Rochewerger, A., Veran, J., and Sabatier, F., Growth factors levels determine efficacy of platelets rich plasma injection in knee osteoarthritis: a randomized double blind noninferiority trial compared with viscosupplementation arthroscopy, J. Arthrosc. Rel. Surgery, 2018, vol. 34, no. 5, pp. 1530–1540. https://doi.org/10.1016/j.arthro.2017.11.035

12. Macaulay, I.C., Carr, P., Gusnanto, A., Ouwehand, W.H., Fitzgerald, D., and Watkins, N.A., Platelet genomics and proteomics in human health and disease, J. Clin. Invest., 2005, vol. 115, no. 12, pp. 3370–3377. https://doi.org/10.1172/JCI26885

13. Garcia, A., Platelet clinical proteomics: facts, challenges, and future perspectives, Proteomics Clin. Appl., 2016, vol. 10, no. 8, pp. 767–773. https://doi.org/10.1002/prca.201500125

14. Fortier, L.A., Barker, J.U., Strauss, E.J., McCarrel, T.M., and Cole, B.J., The role of growth factors in cartilage repair, Clin. Orthop. Rel. Res., 2011, vol. 469, no. 10, pp. 2706–2715. https://doi.org/10.1007/s11999-011-1857-3

15. Dolder, J., Mooren, R., Vloon, A., Stoelinga, P., and Jansen, J., Platelet-rich plasma: quantification of growth factor levels and the effect on growth and differentiation of rat bone marrow cells, Tissue Eng., 2006, vol. 12, no. 11, pp. 3067–3073. https://doi.org/10.1089/ten.2006.12.3067

16. Este, M., Bara, J.J., Denom, J., Menzel, U., Alini, M., Verrier, S., and Herrmann, M., An In Vitro investigation of platelet-rich plasma-gel as a cell and growth factor delivery vehicle for tissue engineering, Tiss. Eng. Part C, Methods, 2016, vol. 22, no. 1, pp. 49–58. https://doi.org/10.1089/ten.tec.2015.0223

17. Fioravanti, C., Frustaci, I., Armellin, E., Condo, R., Arcuri, C., and Cerroni, L., Autologous blood preparations rich in platelets, fibrin and growth factors, Oral. Implant., 2015, vol. 8, no. 4, pp. 96–113. https://doi.org/10.11138/orl/2015.8.4.096

18. Akeda, K., An, H., Okuma, M., Attawia, M., Miyamoto, K., Thonar, E.G., Lenz, M.E., Sah, R.L., and Masuda, K., Platelet-rich plasma stimulates porcine articular chondrocyte proliferation and matrix biosynthesis, Osteoarthr. Cartil., 2006, vol. 14, no. 12, pp. 1272–1280.

19. Spreafico, A., Chellini, F., Frediani, B., Bernardini, G., Niccolini, S., Serchi, T., Collodel, G., Paffetti, A., Fossombroni, V., Galeazzi, M., Marcolongo, R., and Santucci, A., Biochemical investigation of the effects of human platelet releasates on human articular chondrocytes, J. Cell Biochem., 2009, vol. 108, no. 5, pp. 1153–1165. https://doi.org/10.1002/jcb.22344

20. Hildner, F., Eder, M.J., Hofer, K., Aberl, J., Redl, H., van Griensven, M., Gabriel, C., and Peterbauer-Scherb, A., Human platelet lysate successfully promotes proliferation and subsequent chondrogenic differentiation of adipose-derived stem cells: a com parison with articular chondrocytes, Tiss. Eng. Regen. Med., 2015, vol. 9, no. 7, pp. 808–818. https://doi.org/10.1002/term.1649

21. Gaissmaier, C., Fritz, J., Krackhardt, T., Flesch, I., Aicher, W., and Ashammakhi, N., Effect of human platelet supernatant on proliferation and matrix synthesis of human articular chondrocytes in monolayer and three-dimensional alginate cultures, Biomaterials, 2005, vol. 26, no. 14, pp. 1953–1960. https://doi.org/10.1016/j.biomaterials.2004.06.031

22. Muraglia, A., Nguyen, V.T., Nardini, M., Mogni, M., Coviello, D., Dozin, B., Strada, P., Baldelli, I., Formica, M., Cancedda, R., and Mastrogiacomo, M., Culture medium supplements derived from human platelet and plasma: cell commitment and proliferation support, Front. Bioeng. Biotechnol., 2017, vol. 5, p. 66. https://doi.org/10.3389/fbioe.2017.00066

23. Chien, C., Ho, H., Liang, Y., Ko, P., Sheu, M., and Chen, C., Incorporation of exudates of human platelet-rich fibrin gel in biodegradable fibrin scaffolds for tissue engineering of cartilage, J. Biomed. Mater. Res. Part B:, Appl. Biomater., 2012, vol. 100, no. 4, pp. 948–955. https://doi.org/10.1002/jbm.b.32657

24. Zhou, Z., Yu, H., Wang, Y., Guo, Q., Wang, L., and Zhang, H., Z, ZNF606 interacts with Sox9 to regulate chondrocyte differentiation, Biochem. Biophys. Res. Commun., 2016, vol. 479, no. 4, pp. 920–926. https://doi.org/10.1016/j.bbrc.2016.09.048

25. Xu, C., Zhu, S., Wu, M., Han, W., and Yu, Y., Functional receptors and intracellular signal pathways of midkine (MK) and pleiotrophin (PTN), Biol. Pharmac. Bull., 2014, vol. 37, no. 4, pp. 511–520.

26. Vo, N.V., Hartman, R.A., Patil, P.R., Risbud, M.V., Kletsas, D., Iatridis, J.C., Hoyland, J.A., Le Maitre, C.L., Sowa, G.A., and Kang, J.D., Molecular mechanisms of biological aging in intervertebral discs, J. Orthop. Res., 2016, vol. 34, no. 8, pp. 1289–1306. https://doi.org/10.1002/jor.23195

27. Ngo, K., Patil, P., McGowan, S.J., Niedernhofer, L.J., Robbins, P.D., Kang, J., Sowa, G., and Vo, N., Senescent intervertebral disc cells exhibit perturbed matrix homeostasis phenotype, Mech. Ageing Dev, 2017, vol. 166, pp. 16–23. https://doi.org/10.1016/j.mad.2017.08.007

28. Ngo, K., Patil, P., McGowan, S.J., Niedernhofer, L.J., Robbins, P.D., Kang, J., Sowa, G., and Vo, N., Current strategies for treatment of intervertebral disc degeneration: substitution and regeneration possibilities, Biomater. Res., 2017, vol. 21, p. 22. https://doi.org/10.1186/s40824-017-0106-6

29. Vynios, D.H., Metabolism of cartilage proteoglycans in health and disease, Biomed. Res. Int., 2014, vol. 2014. 452315. https://doi.org/10.1155/2014/452315

30. Neill, T., Schaefer, L., and Iozzo, R.V., Decoding the matrix: Instructive roles of proteoglycan receptors, Biochemistry, 2015, vol. 54, no. 30, pp. 4583–4598. https://doi.org/10.1021/acs.biochem.5b00653

31. Chen, S., Fu, P., Wu, H., and Pei, M., Meniscus, articular cartilage, and nucleus pulposus: a comparative review of cartilage-like tissues in anatomy, development, and function, Cell Tiss. Res., 2017, vol. 370, no. 1, pp. 53–70. https://doi.org/10.1007/s00441-017-2613-0

32. Rodrigues-Pinto, R., Richardson, S., and Hoyland, J., Identification of novel nucleus pulposus markers, Bone Joint Res., 2013, vol. 2, no. 8, pp. 169–178. https://doi.org/10.1302/2046-3758.28.2000184

33. Tapp, H., Hernandez, D., Neame, P., and Koob, T., Pleiotrophin inhibits chondrocyte proliferation and stimulates proteoglycan synthesis in mature bovine cartilage, Matrix Biol., 1999, vol. 18, no. 6, pp. 543–556.

34. Lee, C., Sakai, D., Nakai, T., Toyama, K., Mochida, J., Alini, M., and Grad, S., A phenotypic comparison of intervertebral disc and articular cartilage cells in the rat, Eur. Spine J., 2007, vol. 16, no. 12, pp. 2174–2185. https://doi.org/10.1007/s00586-007-0475-y

35. Schloer, S., Pajonczyk, D., and Rescher, U., Annexins in translational research: hidden treasures to be found, Int. J. Mol. Sci., 2018, vol. 19, no. 6, p. 1781. https://doi.org/10.3390/ijms19061781

36. Luo, G., Ducy, P., McKee, M., Pinero, G.J., Loyer, E., Behringer, R.R., and Karsenty, G., Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein, Nature, 1997, vol. 386, no. 6620, pp. 78–81. https://doi.org/10.1038/386078a0

37. Illien-Jünger, S., Torre, O.M., Kindschuh, W.F., Chen, X., Laudier, D.M., and Iatridis, J.C., Ages induce ectopic endochondral ossification in intervertebral discs, Eur. Cell Mater., 2016, vol. 18, no. 32, pp. 257–270. https://doi.org/10.22203/eCM.v032a17

38. Fontes, R.B., Baptista, J.S., Rabbani, S.R., Traynelis, V.C., and Liberti, E.A., Structural and ultrastructural analysis of the cervical discs of young and elderly humans, PLoS One, 2015, vol, 10, no. 10. e0139283. https://doi.org/10.1371/journal.pone.0139283

39. Newman, B., Gigout, L., Sudre, L., Grant, M., and Wallis, G., Coordinated expression of matrix Gla protein is required during endochondral ossification for chondrocyte survival, J. Cell Biol., 2001, vol. 154, no. 3, pp. 659–666. https://doi.org/10.1083/jcb.200106040

40. Lv, F., Leung, V.Y., Huang, S., Huang, Y., Sun, Y., and Cheung, K.M., In search of nucleus pulposus-specific molecular markers, Rheumatology (Oxford), 2014, vol. 53, no. 4, pp. 600–610. https://doi.org/10.1093/rheumatology/ket303

41. Lee, H., Shon, O., Park, S., Kim, H.J., Kim, S., Ahn, M.W., and Do, S.H., Platelet-rich plasma increases the levels of catabolic molecules and cellular dedifferentiation in the meniscus of a rabbit model, Int. J. Mol. Sci., 2016, vol. 17, no. 1, p. 120. https://doi.org/10.3390/ijms17010120