Комахи є однією з найуспішніших груп багатоклітинних організмів, яка налічує більше 1 мільйону видів. Серед них Belgica antarctica Jacobs (Diptera: Chironomidae) – ендемічний вид Антарктики, який існує в екстремально холодних умовах. Значна кількість мікроорганізмів колонізує більшість видів комах, що може призводити і до симбіотичної взаємодії, за якої може спостерігатися підвищення адаптивності організму-хазяїна до холодних умов. За допомогою методів ПЛР і метагеномного аналізу нами продемонстровано, що ендосимбіотичні бактерії Spiroplasma та Wolbachia, ймовірно, відсутні в Belgica antarctica. Натомість у повногеномних сиквенсах, доступних у відкритих базах даних, вдалося виявити 14 видів бактерій, які потенційно можуть бути асоційовані з Belgica antarctica та/або субстратом, у межах якого цей вид Diptera існує. Для з’ясування постійної асоціації ідентифікованих мікроорганізмів з Belgica antarctica, та того, чи надають вони можливу адаптивну перевагу цьому видові, необхідний подальший аналіз.
Ключові слова: мікробіом, ендосимбіонти, Wolbachia, Belgica antarctica
Повний текст та додаткові матеріали
Цитована література
Camerota, M., Simoni, S., Giaimo, R.D., et al., Influences of Wolbachia (Rickettsiales Rickettsiaceae) on the cellular response to cold stress in Drosophila melanogaster (Diptera Drosophilidae), Redia, 2015, vol. 98, pp. 145–148.
Chown, S.L. and Convey, P., Antarctic entomology, Annu. Rev. Entomol., 2016, vol. 61, pp. 119–137. https://doi.org/10.1146/annurev-ento-010715-023537
Coelho, L.P., Alves, R., del Río, Á.R., et al., Towards the biogeography of prokaryotic genes, Nature, 2022, vol. 601, pp. 252–256. https://doi.org/10.1038/s41586-021-04233-4
Contador, T., Gañan, M., Bizama, G., et al., Assessing distribution shifts and ecophysiological characteristics of the only Antarctic winged midge under climate change scenarios, Sci. Rep., 2020, vol. 10, pp. 9087. https://doi.org/10.1038/s41598-020-65571-3
Convey, P. and Block, W., Antarctic diptera: Ecology, physiology and distribution, Eur. J. Entomol., 1996, vol. 93, pp. 1–13.
Duron, O., Bouchon, D., Boutin, S., et al., The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone, BMC Biol., 2008, vol. 6, p. 27. https://doi.org/10.1186/1741-7007-6-27
Engel, P. and Moran, N.A., The gut microbiota of insects – diversity in structure and function, FEMS Microbiol. Rev., 2013, vol. 37, pp. 699–735. https://doi.org/10.1111/1574-6976.12025
Feldhaar, H., Bacterial symbionts as mediators of ecologically important traits of insect hosts, Ecol. Entomol., 2011, vol. 36, pp. 533–543. https://doi.org/10.1111/j.1365-2311.2011.01318.x
Folmer, O., Black, M., Hoeh, W., et al., DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates, Mol. Mar. Biol. Biotechnol., 1994, vol. 3, pp. 294–299. PMID: 7881515
Fusco, V., Abriouel, H., Benomar, N., et al., Opportunistic Food-Borne Pathogens, in Food Safety and Preservation, Grumezescu, A.M., and Holban. A.M., Eds., Academic, 2018, pp. 269–306. https://doi.org/10.1016/B978-0-12-814956-0.00010-X
Gasparich, G.E., Spiroplasmas and phytoplasmas: microbes associated with plant hosts, Biologicals, 2010, vol. 38, pp. 193–203. https://doi.org/10.1016/j.biologicals.2009.11.007
Gomila, M., Bowien, B., Falsen, E., et al., Description of Pelomonas aquatica sp. nov. and Pelomonas puraquae sp. nov., isolated from industrial and haemodialysis water, Int. J. Syst. Evol. Microbiol., 2007, vol. 57, pp. 2629–2635. https://doi.org/10.1099/ijs.0.65149-0
Grimont, F. and Grimont, P.A.D., The Genus Serratia, in The Prokaryotes: A Handbook on the Biology of Bacteria, Proteobacteria: Gamma Subclass, Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E., Eds., New York: Springer-Verlag, 2006, vol. 6, pp. 219–244.
Gurung, K., Wertheim, B., and Falcao Salles, J., The microbiome of pest insects: it is not just bacteria, Entomol. Exp. Appl., 2019, vol. 167, pp. 156–170. https://doi.org/10.1111/eea.12768
Henry, Y. and Colinet, H., Microbiota disruption leads to reduced cold tolerance in Drosophila flies, Sci. Nat., 2018, vol. 105, p. 59. https://doi.org/10.1007/s00114-018-1584-7
Holmes, C.J., Jennings, E.C., Gantz, J.D., et al., The Antarctic mite, Alaskozetes antarcticus, shares bacterial microbiome community membership but not abundance between adults and tritonymphs, Polar Biol., 2019, vol. 42, pp. 2075–2085. https://doi.org/10.1007/s00300-019-02582-5
Hughes, K.A., Worland, M.R., Thorne, M.A.S., and Convey, P., The non-native chironomid Eretmoptera murphyi in Antarctica: erosion of the barriers to invasion, Biol. Invasions, 2013, vol. 15, pp. 269–281. https://doi.org/10.1007/s10530-012-0282-1
Jaramillo, A. and Castañeda, L.E., Gut microbiota of Drosophila subobscura contributes to its heat tolerance and is sensitive to transient thermal stress, Front. Microbiol., 2021, vol. 12, p. 654108. https://doi.org/10.3389/fmicb.2021.654108
Kageyama, A., Matsumoto, A., Ōmura, S., and Takahashi, Y., Humibacillus xanthopallidus gen. nov., sp. nov, Int. J. Syst. Evol. Microbiol., 2008, vol. 58, pp. 1547–1551. https://doi.org/10.1099/ijs.0.65042-0
Kelley, J.L., Peyton, J.T., Fiston-Lavier, A.-S., et al., Compact genome of the Antarctic midge is likely an adaptation to an extreme environment, Nat. Commun., 2014, vol. 5, p. 4611. https://doi.org/10.1038/ncomms5611
Konai, M., Clark, E.A., Camp, M., et al., Temperature Ranges, Growth Optima, and Growth Rates of Spiroplasma (Spiroplasmataceae, class Mollicutes) Species, Curr. Microbiol., 1996, vol. 32, pp. 314–319. https://doi.org/10.1007/s002849900056
Kovalenko, P., Trokhymets, V., Parnikoza, I., et al., Current status of Belgica antarctica Jacobs, 1900 (Diptera: Chironomidae) distribution by the data of Ukrainian Antarctic Expeditions, Ukr. Antarct. J., 2021, vol. 2, pp. 76–93. https://doi.org/10.33275/1727-7485.2.2021.679
Lau, M.-J., Ross, P.A., Endersby-Harshman, N.M., and Hoffmann, A.A., Impacts of Low Temperatures on Wolbachia (Rickettsiales: Rickettsiaceae)-Infected Aedes aegypti (Diptera: Culicidae), J. Med. Entomol., 2020, vol. 57, pp. 1567–1574. https://doi.org/10.1093/jme/tjaa074
Lo, W.-S., Ku, C., Chen, L.-L., et al., Comparison of metabolic capacities and inference of gene content evolution in mosquito-associated Spiroplasma diminutum and S. taiwanense, Genome Biol. Evol., 2013, vol. 5, pp. 1512–1523. https://doi.org/10.1093/gbe/evt108
Maistrenko, O.M., Serga, S.V., Vaiserman, A.M., and Kozeretska, I.A., Effect of Wolbachia infection on aging and longevity-associated genes in Drosophila, in Life Extension: Lessons from Drosophila, Vaiserman, A.M., Moskalev, A.A., and Pasyukova, E.G., Eds., Springer-Verlag, 2015, pp. 83–104. https://doi.org/10.1007/978-3-319-18326-8_4
Maistrenko, O.M., Serga, S.V., Vaiserman, A.M., and Kozeretska, I.A., Longevity-modulating effects of symbiosis: insights from Drosophila–Wolbachia interaction, Biogerontology, 2016, vol. 17, pp. 785–803. https://doi.org/10.1007/s10522-016-9653-9
Massey, J.H. and Newton, I.L.G., Diversity and function of arthropod endosymbiont toxins, Trends Microbiol., 2022, vol. 30, pp. 185–198. https://doi.org/10.1016/j.tim.2021.06.008
Milanese, A., Mende, D.R., Paoli, L., et al., Microbial abundance, activity and population genomic profiling with mOTUs2, Nat. Commun., 2019, vol. 10, p. 1014. https://doi.org/10.1038/s41467-019-08844-4
Mollerup, S., Friis-Nielsen, J., Vinner, L., et al., Propionibacterium acnes: Disease-causing agent or common contaminant? Detection in diverse patient samples by next-generation sequencing, J. Clin. Microbiol., 2016, vol. 54, pp. 980–987. https://doi.org/10.1128/JCM.02723-15
Ochyra, R., Lewis-Smith, R.I., and Bednarek-Ochyra, H., The Illustrated Moss Flora of Antarctica, Cambridge: Cambridge Univ., 2008.
Oh, W.T., Giri, S.S., Yun, S., et al., Janthinobacterium lividum as an emerging pathogenic bacterium affecting rainbow trout (Oncorhynchus mykiss) fisheries in Korea, Pathogens, 2019, vol. 8, p. E146. https://doi.org/10.3390/pathogens8030146
O’Neill, S.L., Giordano, R., Colbert, A.M., et al., 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects, Proc. Nat. Acad. Sci., 1992, vol. 89, pp. 2699–2702. https://doi.org/10.1073/pnas.89.7.2699
Pavinato, V.A.C., Wijeratne, S., Spacht, D., et al., Leveraging targeted sequencing for non-model species: a step-by-step guide to obtain a reduced SNP set and a pipeline to automate data processing in the Antarctic Midge, Belgica Antarctica, bioRxiv, 2019, p. 772384. https://doi.org/10.1101/772384
Potocka, M. and Krzemińska, E., Trichocera macu-lipennis (Diptera)–an invasive species in Maritime Antarctica, Peer J., 2018, vol. 6, p. e5408. https://doi.org/10.7717/peerj.5408
Reddy, G.S.N., Matsumoto, G.I., Schumann, P., et al., Psychrophilic pseudomonads from Antarctica: Pseudomonas antarctica sp. nov., Pseudomonas meridiana sp. nov. and Pseudomonas proteolytica sp. nov., Int. J. Syst. Evol. Microbiol., 2004, vol. 54, pp. 713–719. https://doi.org/10.1099/ijs.0.02827-0
Ruscheweyh, H.-J., Milanese, A., Paoli, L., et al., mOTUs: Profiling taxonomic composition, transcriptional activity and strain populations of microbial communities, Curr. Protoc., 2021, vol. 1, p. e218. https://doi.org/10.1002/cpz1.218
Teets, N.M., Peyton, J.T., Colinet, H., et al., Gene expression changes governing extreme dehydration tolerance in an Antarctic insect, Proc. Nat. Acad. Sci., 2012, vol. 109, pp. 20744–20749. https://doi.org/10.1073/pnas.1218661109
Timmis, K.N., Pseudomonas putida: a cosmopolitan opportunist par excellence, Environ. Microbiol., 2002, vol. 4, pp. 779–781. https://doi.org/10.1046/j.1462-2920.2002.00365.x
Richard, K.J., Convey, P., and Block, W., The terrestrial arthropod fauna of the Byers Peninsula, Livingston Island, South Shetland Islands, Polar Biol., 1994, vol. 14, pp. 371–379. https://doi.org/10.1007/BF00240257
Serga, S.V., Maistrenko, O.M., Matiytsiv, N.P., et al., Effects of Wolbachia infection on fitness-related traits in Drosophila melanogaster, Symbiosis, 2021, vol. 83, pp. 163–172. https://doi.org/10.1007/s13199-020-00743-3
Serga, S.V., Maistrenko, O.M., and Kozeretska, I.A., Wolbachia: an endosymbiont of Drosophila, in Microbial Symbionts Functions and Molecular Interactions on Host, Dhanasekaran, D., Ed., Elsevier, 2023, pp. 599–620.
Sugg, P., Edwards, J.S., and Baust, J., Phenology and life history of Belgica antarctica, an Antarctic midge (Diptera: Chironomidae), Ecol. Entomol., 1983, vol. 8, pp. 105–113. https://doi.org/10.1111/j.1365-2311.1983.tb00487.x
Usher, M.B. and Edwards, M., A dipteran from south of the Antarctic Circle: Belgica antarctica (Chironomidae), with a description of its larvae, Biol. J. Linn. Soc., 1984, vol. 23, pp. 19–31. https://doi.org/10.1111/j.1095-8312.1984.tb00803.x
Wirth, W.W. and Gressitt, J.L., Diptera: Chironomidae (Midges), Antarct. Res. Ser., 1967, vol. 10, pp. 197–203. https://doi.org/10.1029/AR010p0197
Worland, M.R., Eretmoptera murphyi: pre-adapted to survive a colder climate, Physiol. Entomol., 2010, vol. 35, pp. 140–147. https://doi.org/10.1111/j.1365-3032.2010.00722.x
Zhang, D.-C., Schumann, P., Liu, H.-C., et al., Arthrobacter alpinus sp. nov., a psychrophilic bacterium isolated from alpine soil, Int. J. Syst. Evol. Microbiol., 2010, vol. 60, pp. 2149–2153. https://doi.org/10.1099/ijs.0.017178-0
Zhou, W., Rousset, F., and O’Neil, S., Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences, Proc. R. Soc. B, 1998, vol. 265, pp. 509–515. https://doi.org/10.1098/rspb.1998.0324