РЕЗЮМЕ. МікроРНК (miRNA), невеликий клас некодуючих РНК, який регулює експресію генів, обмежені декількома видами рослин. У цьому дослідженні було застосовано підхід insilico з метою визначення мікроРНК у відомих маркерних експресованих послідовностях (EST) Citrus reticulata L. Загалом було передбачено 17 мікроРНК із 23 різних EST, а також їхні вторинні структури та цілі. До ідентифікованих 63 цілей входять декілька транскрипційних факторів, білки, що регулюють ріст, розвиток, цвітіння рослин та розвиток насіння, а також реакцію на стрес. Цисрегуляторний елемент, присутній у промотерній ділянці MIR генів C. reticulata, продемонстрував свою актуальність щодо реакції на світло, ауксин, гібберелліни, абсцизову кислоту (ABA), антоцианін, саліцилову кислоту, щодо анаеробної індукції, контролю циркадного ритму, нітратозалежного регулювання клітинного циклу та реплікації ДНК, захисту та реакції на стрес. У цьому дослідженні було встановлено мікроРНК та їхні регуляторні елементи в C. reticulate. Наше дослідження також буде корисним для вивчення можливості ідентифікації мікроРНК на основі геномних даних різних рослин та передбачення можливості експресії ідентифікованих генів мікроРНК на основі наявності висхідного промотера та інших регуляторних елементів.
Ключові слова: мікроРНК, Citrus reticulata, маркерна експресована послідовність, цисрегуляторний елемент, psRNATarget
Повний текст та додаткові матеріали
Цитована література
Baghban Kohnehrouz, B., Bastami, M., and Nayeri, S., In silico identification of novel microRNAs and targets using EST analysis in Allium cepa L., Interdiscip. Sci.: Comput. Life Sci., 2018, vol. 10, pp. 771–780.
Barrett, H. and Rhodes, A., A numerical taxonomic study of affinity relationships in cultivated Citrus and its close relatives, Syst. Bot., 1976, pp. 105–136.
Baumberger, N. and Baulcombe, D., Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs, Proc. Natl. Acad. Sci., 2005, vol. 102, pp. 11928–11933.
Bologna, N.G., Schapire, A.L., Zhai, J., Chorostecki, U., Boisbouvier, J., Meyers, B.C., and Palatnik, J.F., Multiple RNA recognition patterns during microRNA biogenesis in plants, Genome Res., 2013, vol. 23, pp. 1675–1689.
Bravo, L., Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance, Nutr. Rev., 1998, vol. 56, pp. 317–333.
Brivanlou, A.H. and Darnell, Jr.J.E., Signal transduction and the control of gene expression, Science, 2002, vol. 295, pp. 813–818.
Chen, X., Li, Q., Wang, J., Guo, X., Jiang, X., Ren, Z., Weng, C., Sun, G., Wang, X., and Liu, Y., Identification and characterization of novel amphioxus microRNAs by Solexa sequencing, Genome Biol., 2009, vol. 10, pp. 1–13.
Chowdhury, M.R., Basak, J., and Bahadur, R.P., Elucidating the functional role of predicted miRNAs in post-transcriptional gene regulation along with Symbiosis in Medicago truncatula, Curr. Bioinf., 2020, vol. 15, pp. 108–120.
Consortium, G.O., Gene ontology consortium: going forward, Nucleic Acids Res., 2015, vol. 43, pp. D1049–D1056.
Devi, K.J., Chakraborty, S., Deb, B., and Rajwanshi, R., Computational identification and functional annotation of microRNAs and their targets from expressed sequence tags (ESTs) and genome survey sequences (GSSs) of coffee (Coffea arabica L.), Plant Gene, 2016, vol. 6, pp. 30–42.
Dezulian, T., Remmert, M., Palatnik, J.F., Weigel, D., and Huson, D.H., Identification of plant microRNA homologs, Bioinformatics, 2006, vol. 22, pp. 359–360.
Ding, Y., Chen, Z., and Zhu, C., Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa), J. Exp. Bot., 2011, vol. 62, pp. 3563–3573.
Elhiti, M. and Stasolla, C., Structure and function of homodomain-leucine zipper (HD-Zip) proteins, Plant Signaling Behav., 2009, vol. 4, pp. 86–88.
Fan, F., Yang, X., Cheng, Y., Kang, Y., and Chai, X., The DnaJ gene family in pepper (Capsicum annuum L.): comprehensive identification, characterization and expression profiles, Front. Plant Sci., 2017, vol. 8, p. 689.
FAO (2019). Citrus Fruit Fresh and Processed Statistical Bulletin 2020. https://www.fao.org/3/cb6492en/ b6492en.pdf. Accessed May 16, 2023.
Frazier, T.P., Xie, F., Freistaedter, A., Burklew, C.E., and Zhang, B., Identification and characterization of microRNAs and their target genes in tobacco (Nicotiana tabacum), Planta, 2010, vol. 232, pp. 1289–1308.
Gbaj, M.A., Sadawe, I.A., Meiqal, N.M., Bensaber, S.M., Maamar, M.S., Hermann, A., and Gbaj, A.M., Evaluation of neuropharmacological activities of methanolic and aqueous extracts of Citrus reticulata (Rutaceae) fruit peels, Am. J. Biomed. Sci. Res., 2019, vol. 2, pp. 131–135.
Griffiths-Jones, S., Grocock, R.J., Van Dongen, S., Bateman, A., and Enright, A.J., miRBase: microRNA sequences, targets and gene nomenclature, Nucleic Acids Res., 2006, vol. 34, pp. D140–D144.
Griffiths-Jones, S., Saini, H.K., van Dongen, S., and Enright, A.J., miRBase: tools for microRNA genomics, Nucleic Acids Res., 2007, vol. 36, pp. D154–D158.
Hall, T., Biosciences, I., and Carlsbad, C., BioEdit: an important software for molecular biology, GERF Bull Biosci., 2011, vol. 2, pp. 60–61.
Han, Y.-Q., Hu, Z., Zheng, D.-F., and Gao, Y.M., Analysis of promoters of microRNAs from a Glycine max degradome library, J. Zhejiang Univ., Sci., B., 2014, vol. 15, pp. 125–132.
Hao, X., Wang, B., Wang, L., Zeng, J., Yang, Y., and Wang, X., Comprehensive transcriptome analysis reveals common and specific genes and pathways involved in cold acclimation and cold stress in tea plant leaves, Sci. Hortic., 2018, vol. 240, pp. 354–368.
Hassan, A.Z., Ahmed, K.M., Abu-Gabal, N.S., Mahrous, K.F., and Shalaby, N.M., Phytochemical and genotoxicity studies of Citrus reticulata aerial part in mice, Egypt. Pharm. J., 2017, vol. 16, p. 87.
Hindi, N.K.K. and Chabuck, Z.A.G., Antimicrobial activity of different aqueous lemon extracts, J. Appl. Pharm. Sci., 2013, vol. 3, pp. 074–078.
Jagadeeswaran, G., Zheng, Y., Li, Y.F., Shukla, L.I., Matts, J., Hoyt, P., Macmil, S.L., Wiley, G.B., Roe, B.A., and Zhang, W., Cloning and characterization of small RNAs from Medicago truncatula reveals four novel legume-specific microRNA families, New Phytol., 2009, vol. 184, pp. 85–98.
Jones-Rhoades, M.W., Bartel, D.P., and Bartel, B., MicroRNAs and their regulatory roles in plants, Annu. Rev. Plant Biol., 2006, vol. 57, pp. 19–53.
Kangralkar, V., Gavimath, C., Vijapur, V., Gowri, B., Hooli, V., and Mathapati, P., Protective effect of essential oil of Citrus reticulata on isoniazid induced hepatotoxicity in Wistar rats, Int. J. Pharm. Appl., 2010, vol. 1.
Kimura, M., A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences, J. Mol. Evol., 1980, vol. 16, pp. 111–120.
Kong, F., Deng, Y., Zhou, B., Wang, G., Wang, Y., and Meng, Q., A chloroplast-targeted DnaJ protein contributes to maintenance of photosystem II under chilling stress, J. Exp. Bot., 2014, vol. 65, pp. 143–158.
Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K., MEGA X: molecular evolutionary genetics analysis across computing platforms, Mol. Biol. Evol., 2018, vol. 35, pp. 1547–1549.
Lin, Y. and Lai, Z., Comparative analysis reveals dynamic changes in miRNAs and their targets and expression during somatic embryogenesis in longan (Dimocarpus longan Lour.), PLoS One, 2013, vol. 8, p. e60337.
Liu, Y., Heying, E., and Tanumihardjo, S.A., History, global distribution, and nutritional importance of citrus fruits, Compr. Rev. Food Sci. Food Saf., 2012, vol. 11, pp. 530–545.
Lu, Y.-B., Qi, Y.-P., Yang, L.-T., Guo, P., Li, Y., and Chen, L.-S., Boron-deficiency-responsive microRNAs and their targets in Citrus sinensis leaves, BMC Plant Biol., 2015, vol. 15, pp. 1–15.
Ma, C.-L., Qi, Y.-P., Liang, W.-W., Yang, L.-T., Lu, Y.-B., Guo, P., Ye, X., and Chen, L.-S., MicroRNA regulatory mechanisms on Citrus sinensis leaves to magnesium-deficiency, Front. Plant Sci., 2016, vol. 7, p. 201.
Mallory, A.C. andVaucheret, H., Functions of microRNAs and related small RNAs in plants, Nat. Genet., 2006, vol. 38, p. S31.
Megraw, M., Baev, V., Rusinov, V., Jensen, S.T., Kalantidis, K., and Hatzigeorgiou, A.G., MicroRNA promoter element discovery in Arabidopsis, RNA, 2006, vol. 12, pp. 1612–1619.
Mishra, A.K., Duraisamy, G.S., Týcová, A., and Matoušek, J., Computational exploration of microRNAs from expressed sequence tags of Humulus lupulus, target predictions and expression analysis, Comput. Biol. Chem., 2015, vol. 59, pp. 131–141.
Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A.C., and Kanehisa, M., KAAS: an automatic genome annotation and pathway reconstruction server, Nucleic Acids Res., 2007, vol. 35, pp. W182–W185.
Motameny, S., Wolters, S., Nürnberg, P., and Schumacher, B., Next generation sequencing of miRNAs–strategies, resources and methods, Genes, 2010, vol. 1, pp. 70–84.
Pandey, B., Gupta, O.P., Pandey, D.M., Sharma, I., and Sharma, P., Identification of new stress-induced microRNA and their targets in wheat using computational approach, Plant Signaling Behav., 2013, vol. 8, p. e23932.
Qiu, X.-B., Shao, Y.-M., Miao, S., and Wang, L., The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones, Cell. Mol. Life Sci. CMLS, 2006, vol. 63, pp. 2560–2570.
Rajwanshi, R., Chakraborty, S., Jayanandi, K., Deb, B., and Lightfoot, D.A., Orthologous plant microRNAs: microregulators with great potential for improving stress tolerance in plants, Theor. Appl. Genet., 2014, vol. 127, pp. 2525–2543.
Ravichandran, S., Ragupathy, R., Edwards, T., Domaratzki, M., and Cloutier, S., MicroRNA-guided regulation of heat stress response in wheat, BMC Genomics, 2019, vol. 20, pp. 1–16.
Reinhart, B.J., Weinstein, E.G., Rhoades, M.W., Bartel, B., and Bartel, D.P., MicroRNAs in plants, Genes Dev., 2002, vol. 16, pp. 1616–1626.
Rhoades, M.W., Reinhart, B.J., Lim, L.P., Burge, C.B., Bartel, B., and Bartel, D.P., Prediction of plant microRNA targets, Cell, 2002, vol. 110, pp. 513–520.
Rogers, K. and Chen, X., Biogenesis, turnover, and mode of action of plant microRNAs, Plant Cell, 2013, vol. 25, pp. 2383–2399.
Rombauts, S., Déhais, P., Van Montagu, M., and Rouzé, P., PlantCARE, a plant cis-acting regulatory element database, Nucleic Acids Res., 1999, vol. 27, pp. 295–296.
Shikata, M., Matsuda, Y., Ando, K., Nishii, A., Takemura, M., Yokota, A., and Kohchi, T., Characterization of Arabidopsis ZIM, a member of a novel plant-specific GATA factor gene family, J. Exp. Bot., 2004, vol. 55, pp. 631–639.
Singh, A., Singh, S., Panigrahi, K.C., Reski, R., and Sarkar, A.K., Balanced activity of microRNA166/165 and its target transcripts from the class III homeodomain-leucine zipper family regulates root growth in Arabidopsis thaliana, Plant Cell Rep., 2014, vol. 33, pp. 945–953.
Singh, R., Tiwari, J.K., Rawat, S., Sharma, V., and Singh, B.P., In silico identification of candidate microRNAs and their targets in potato somatic hybrid Solanum tuberosum (+) S. pinnatisectum for late blight resistance, Plant Omics, 2016, vol. 9, pp. 159–164.
Solovyev, V.V., Shahmuradov, I.A., and Salamov, A.A., Identification of promoter regions and regulatory sites, in Computational Biology of Transcription Factor Binding, 2010, pp. 57–83.
Song, C., Fang, J., Li, X., Liu, H., and Chao, C.T., Identification and characterization of 27 conserved microRNAs in citrus, Planta, 2009, vol. 230, pp. 671–685.
Stark, A., Bushati, N., Jan, C.H., Kheradpour, P., Hodges, E., Brennecke, J., Bartel, D.P., Cohen, S.M., and Kellis, M., A single Hox locus in Drosophila produces functional microRNAs from opposite DNA strands, Genes Dev., 2008, vol. 22, pp. 8–13.
Sultana, H.S., Ali, M., and Panda, B.P., Influence of volatile constituents of fruit peels of Citrus reticulata Blanco on clinically isolated pathogenic microorganisms under in vitro, Asian Pac. J. Trop. Biomed., 2012, vol. 2, pp. S1299–S1302.
Tatematsu, K., Nakabayashi, K., Kamiya, Y., and Nambara, E., Transcription factor AtTCP14 regulates embryonic growth potential during seed germination in Arabidopsis thaliana, Plant J., 2008, vol. 53, pp. 42–52.
Tumbas, V.T., Ćetković, G.S., Đilas, S.M., Čanadanović-Brunet, J.M., Vulić, J.J., Knez, Ž., and Škerget, M., Antioxidant activity of mandarin (Citrus reticulata) peel, Acta Period. Technol., 2010, pp. 195–203.
Viveka, A. and Moossab, F., Identification of novel micro RNAs and their targets in Cocos nucifera–A Bioinformatics approach, Biosci. Biotechnol. Res. Commun., 2016, vol. 9, pp. 481–488.
Wang, T., Chen, L., Zhao, M., Tian, Q., and Zhang, W.-H., Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing, BMC Genomics, 2011, vol. 12, pp. 1–11.
Wang, J., Chen, Z., Zhang, Q., Meng, S., and Wei, C., The NAC transcription factors OsNAC20 and OsNAC26 regulate starch and storage protein synthesis, Plant Physiol., 2020, vol. 184, pp. 1775–1791.
Xia, Z., Zhang, X., Li, J., Su, X., and Liu, J., Overexpression of a tobacco J-domain protein enhances drought tolerance in transgenic Arabidopsis, Plant Physiol. Biochem., 2014, vol. 83, pp. 100–106.
Xie, Z., Allen, E., Fahlgren, N., Calamar, A., Givan, S.A., and Carrington, J.C., Expression of Arabidopsis MIRNA genes, Plant Physiol., 2005, vol. 138, pp. 2145–2154.
Xie, F., Frazier, T.P., and Zhang, B., Identification and characterization of microRNAs and their targets in the bioenergy plant switchgrass (Panicum virgatum), Planta, 2010, vol. 232, pp. 417–434.
Yang, C., Liu, T., Bai, F., Wang, N., Pan, Z., Yan, X., and Peng, S., miRNAome analysis associated with anatomic and transcriptomic investigations reveal the polar exhibition of corky split vein in boron deficient Citrus sinensis, Mol. Genet. Genomics, 2015, vol. 290, pp. 1639–1657.
Yu, B., Bi, L., Zheng, B., Ji, L., Chevalier, D., Agarwal, M., Ramachandran, V., Li, W., Lagrange, T., and Walker, J.C., The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis, Proc. Natl. Acad. Sci., 2008, vol. 105, pp. 10073–10078.
Zhang, W., Ruan, J., Ho, T.-hD., You, Y., Yu, T., and Quatrano, R.S., Cis-regulatory element based targeted gene finding: genome-wide identification of abscisic acid-and abiotic stress-responsive genes in Arabidopsis thaliana, Bioinformatics, 2005, vol. 21, pp. 3074–3081.
Zhang, B., Pan, X., Cannon, C.H., Cobb, G.P., and Anderson, T.A., Conservation and divergence of plant microRNA genes, Plant J., 2006, vol. 46, pp. 243–259.
Zhang, W., Luo, Y., Gong, X., Zeng, W., and Li, S., Computational identification of 48 potato microRNAs and their targets, Comput. Biol. Chem., 2009, vol. 33, pp. 84–93.
Zhang, Y., Zhu, X., Chen, X., Song, C., Zou, Z., Wang, Y., Wang, M., Fang, W., and Li, X., Identification and characterization of cold-responsive microRNAs in tea plant (Camellia sinensis) and their targets using high-throughput sequencing and degradome analysis, BMC Plant Biol., 2014, vol. 14, pp. 1–18.
Zhang, C., Zhang, B., Ma, R., Yu, M., Guo, S., and Guo, L., Isolation and expression analysis of four HD-ZIP III family genes targeted by microRNA166 in peach, GMR, Genet. Mol. Res., 2015, vol. 14, pp. 14151–14161.
Zhu, Q.-H., Fan, L., Liu, Y., Xu, H., Llewellyn, D., and Wilson, I., miR482 regulation of NBS-LRR defense genes during fungal pathogen infection in cotton, PLoS One, 2013, vol. 8, pp. e84390.
Zuker, M., Mfold web server for nucleic acid folding and hybridization prediction, Nucleic Acids Res., 2003, vol. 31, pp. 3406–3415.