Каротиноїди, як попередники синтезу вітаміну А, є важливими мікронутрієнтами в харчуванні людини і годівлі тварин. Найбільш ефективно в тваринному організмі на вітамін А перетворюється β-каротин. Підвищення його вмісту в зрілому зерні кукурудзи можливе за рахунок маркер-асоційованого добору задля виявлення генотипів із сприятливим алельним станом ключових генів біосинтезу каротиноїдів. Важливим для накопичення β-каротину в зерні кукурудзи є ген β-каротингідроксилази 1. Один з алелів цього гена блокує перехід β-каротину в β-криптоксантин і таким чином забезпечує накопичення β-каротину в зрілому зерні. Цей сприятливий алель за маркером crtRB1-3ʹTE методом полімеразної ланцюгової реакції виявляється як амплікон довжиною у 543 п.н. на відміну від двох інших, 296 п.н. і 296 + 875 п.н., не пов’язаних із підвищенням вмісту β-каротину в зерні повної стиглості. В нашому дослідженні серед 15 загальновідомих ліній кукурудзи закордонної селекції і 153 перспективних у селекційному відношенні ліній Дніпровської селекційної програми сприятливий для накопичення β-каротину алель гена β-каротингідроксилази 1 (543 п.н.) несли відповідно 26,7 і 21,6 % ліній. Алель 543 п.н. гена β-каротингідроксилази 1 за маркером crtRB1-3ʹTE зустрічався серед більшості проаналізованих підвидів, типів зародкової плазми та груп стиглості кукурудзи, проте відмічено тенденцію до збільшення його частоти у ліній з кременистим типом зернівки, ліній зародкових плазм Ланкастер і Лакон, ранньостиглих і середньоранніх ліній. Лінії сучасного генофонду кукурудзи, ідентифіковані як носії алеля 543 п.н. гена β-каротингідроксилази 1 за маркером crtRB1-3ʹTE, рекомендовано використовувати в спеціальних про-грамах маркер-допоміжної селекції на підвищення вмісту β-каротину для окремих підвидів, груп стиглості та типів зародкової плазми.
Ключові слова: кукурудза, каротиногенез, β-каротин, молекулярно-генетичні маркери, лінія, ген crtRB1
Повний текст та додаткові матеріали
Цитована література
Abraham, M.E., Weimer, S.L., Scoles, K., et al., Orange corn diets associated with lower severity of footpad dermatitis in broilers, Poult. Sci., 2021, vol. 100, no. 5, p. 101054. https://doi.org/10.1016/j.psj.2021.101054
Ali, F., Qanmber, G., Li, F., et al., Updated role of ABA in seed maturation, dormancy, and germination, J. Adv. Res., 2022, vol. 35, pp. 199–214. https://doi.org/10.1016/j.jare.2021.03.011
Babu, R., Rojas, N.P., Gao, S., et al., Validation of the effects of molecular marker polymorphisms in LcyE and CrtRB1 on provitamin A concentrations for 26 tropical maize populations, Theor. Appl. Genet., 2013, vol. 2016, pp. 389–399. https://doi.org/10.1007/s00122-012-1987-3
Baseggio, M., Murray, M., Magallanes-Lundback, M., et al., Natural variation for carotenoids in fresh kernels is controlled by uncommon variants in sweet corn, Plant Genome, 2020, vol. 13, no. 1, p. e20008. https://doi.org/10.1002/tpg2.20008
Baveja, A., Muthusamy, V., Panda, K.K., et al., Development of multinutrient-rich biofortified sweet corn hybrids through genomics-assisted selection of shrunken2, opaque2, lcyE and crtRB1 genes, J. Appl. Genet., 2021, https://doi.org/10.1007/s13353-021-00633-4
Carazo, A., Macáková, K., Matoušová, K., et al., Vitamin A update: forms, sources, kinetics, detection, function, deficiency, therapeutic use and toxicity, Nutrients, 2021, vol. 13, no. 5, p. 1703. https://doi.org/10.3390/nu13051703
Chauhan, H.S., Chhabra, R., Rashmi, T., et al., Impact of vte4 and crtRB1 genes on composition of vitamin-E and provitamin-A carotenoids during kernel-stages in sweet corn, J. Food Composit. Analysis, 2022, vol. 105, p. 104264. https://doi.org/10.1016/j.jfca.2021.104264
Cherchel, V.Yu., Dziubetskyi, B.V., Satarova, T.M., et al., Initial Material of Lancaster Germplasm in Maize Selection and Biotechnology, Kyiv: Agrarna Nauka, 2020, pp. 20–43. https://doi.org/10.31073/978-966-540-500-9
Cheremisina, S.H., Grain market in Ukraine: analysis of the current state and development prospects, Ekon. APK, 2021a, no. 2, p. 48. https://doi.org/10.32317/2221-1055.202102048
Cheremisina, S.H., Status and prospects of development of grain exports from Ukraine to African countries, Ekon. APK, 2021b, no. 3, p. 33. https://doi.org/10.32317/2221-1055.202103033
Colombo, R., Ferron, L., and Papetti, A., Colored Corn: An up-date on metabolites extraction, health implication, and potential use, Molecules, 2021, vol. 26, no. 1, p. 199. https://doi.org/10.3390/molecules26010199
Das, A.K., Gowda, M.M., Muthusamy, V., et al., Development of maize hybrids with enhanced vitamin-E, vitamin-A, lysine, and tryptophan through molecular breeding, Front. Plant Sci., 2021, vol. 12, p. 659381. https://doi.org/10.3389/fpls.2021.659381
Duo, H., Hossain, F., Muthusamy, V., et al., Development of sub-tropically adapted diverse provitamin-A rich maize inbreds through marker-assisted pedigree selection, their characterization and utilization in hybrid breeding, PLoS One, 2021, vol. 16, no. 2, p. e0245497. https://doi.org/10.1371/journal.pone.0245497
Goredema-Matongera, N., Ndhlela, T., Magorokosho, C., et al., Multinutrient biofortification of maize (Zea mays L.) in Africa: current status, opportunities and limitations, Nutrients, 2021, vol. 13, no. 3, p. 1039. https://doi.org/10.3390/nu13031039
Goswami, R., Zunjare, R.U., Khan, S., et al., Genetic variability of kernel provitamin-A in sub-tropically adapted maize hybrids possessing rare allele of β-carotene hydroxylase, Cereal Res. Commun., 2019, vol. 47, pp. 205–215. https://doi.org/10.1556/0806.47.2019.12
Graça Dias, M., Borge, G.I.A., Kljak, K., et al., European database of carotenoid levels in foods. Factors affecting carotenoid content, Foods, 2021, vol. 10, no. 5, p. 912. https://doi.org/10.3390/foods10050912
Harjes, C.E., Rocheford, T.R., Bai, L., et al., Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification, Science, 2008, vol. 319, no. 5861, pp. 330–333. https://doi.org/10.1126/science.1150255
Hwang, T., Ndolo, V.U., Katundu, M., et al., Provitamin A potential of landrace orange maize variety (Zea mays L.) grown in different geographical locations of central Malawi, Food Chem., 2016, vol. 196, pp. 1315–1324. https://doi.org/10.1016/j.foodchem.2015.10.067
Kebede, D., Mengesha, W., Menkir, A., et al., Marker based enrichment of provitamin A content in two tropical maize synthetics, Sci. Rep., 2021, vol. 11, p. 14998. https://doi.org/10.1038/s41598-021-94586-7
Kljak, K., Duvnjak, M., Bedeković, D., et al., Commercial corn hybrids as a single source of dietary carotenoids: effect on egg yolk carotenoid profile and pigmentation, Sustainability, 2021, vol. 13, no. 21, p. 12287. https://doi.org/10.3390/su132112287
Maazou, A.-R.S., Gedil, M., Adetimirin, V.O., et al., Comparative assessment of effectiveness of alternative genotyping assays for characterizing carotenoids accumulation in tropical maize inbred lines, Agronomy, 2021, vol. 11, no. 10, p. 2022. https://doi.org/10.3390/agronomy11102022
Mehta, B.K., Muthusamy, V., Zunjare, R.U., et al., Biofortification of sweet corn hybrids for provitamin-A, lysine and tryptophan using molecular breeding, J. Cereal Sci., 2020, vol. 96, p. 103093. https://doi.org/10.1016/j.jcs.2020.103093
Mehta, B.K., Chhabra, R., Muthusamy, V., et al., Expression analysis of β-carotene hydroxylase1 and opaque2 genes governing accumulation of provitamin-A, lysine and tryptophan during kernel development in biofortified sweet corn, 3 Biotech, 2021, vol. 11, p. 325. https://doi.org/10.1007/s13205-021-02837-1
Menkir, A., Dieng, I., Mengesha, W., et al., Unravelling the effect of provitamin a enrichment on agronomic performance of tropical maize hybrids, Plants (Basel), 2021, vol. 10, no. 8, p. 1580. https://doi.org/10.3390/plants10081580
Mladenović-Drinić, S., Vukadinović, J., Srdić, J., et al., Effect of cooking on the content of carotenoids and tocopherols in sweet corn, Food Feed Res., 2021,vol. 48, no. 2. https://doi.org/10.5937/ffr0-31960
Murray, M.G. and Thompson, W.F., Rapid isolation of high molecular weight plant DNA, Nucleic Acids Res., 1980, vol. 8, pp. 4321–4325.
Muthusamy, V., Hossain, F., Thirunavukkarasu, N., et al., Allelic variations for lycopene-ε-cyclase and β-carotene hydroxylase genes in maize inbreds and their utilization in β-carotene enrichment programme, Cogent Food Agric., 2015, vol. 1, no. 1, p. 1033141. https://doi.org/10.1080/23311932.2015.1033141
Naqvi, Sh., Zhu, Ch., Farre, G., et al., Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways, Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, no. 19, p. 7762–7767. https://doi.org/10.1073/pnas.0901412106
Natesan, S., Singh, T.S., Duraisamy, T., et al., Characterization of crtRB1 gene polymorphism and β-carotene content in maize landraces originated from North Eastern Himalayan region (NEHR) of India, Front. Sustainable Food Syst., 2020, vol. 4, p. 78. https://doi.org/10.3389/fsufs.2020.00078
Petrychenko, V.F. and Tomashuk, O.V., Features of formation of indicators of quality of corn grain at various technologies of cultivation in the Foreststeppe of the Right bank, Plant Soil Sci., 2019, vol. 10, no. 2. https://doi.org/10.31548/agr2019.02.029
Qutub, M., Chandran, S., Rathinavel, K., et al., Improvement of a Yairipok Chujak maize landrace from North Eastern Himalayan region for β-carotene content through molecular marker-assisted backcross breeding, Genes, 2021, vol. 12, no. 5, p. 762. https://doi.org/10.3390/genes12050762
Roca, M. and Pérez-Gálvez, A., Metabolomics of chlorophylls and carotenoids: analytical methods and metabolome-based studies, Antioxidants (Basel), 2021, vol. 10, no. 10, p. 1622. https://doi.org/10.3390/antiox10101622
Saenz, E., Borrás, L., and Gerde, J.A., Carotenoid profiles in maize genotypes with contrasting kernel hardness, J. Cereal Sci., 2021, vol. 99, p. 103206. https://doi.org/10.1016/j.jcs.2021.103206
Sagare, D., Shetti, P., Surender, M., et al., Marker-assisted backcross breeding for enhancing β-carotene of QPM inbreds, Mol. Breed., 2019, vol. 39, no. 2, p. 31. https://doi.org/10.1007/s11032-019-0939-x
Satarova, T.M., Semenova, V.V., Zhang, J., et al., Differentiation of maize breeding samples by β-carotene content, Regul. Mech. Biosyst., 2019, vol. 10, no. 1, pp. 63–68. https://doi.org/10.15421/021910
Sathasivam, R., Radhakrishnan, R., Kim, J.K., et al., An update on biosynthesis and regulation of carotenoids in plants, S. Afr. J. Bot., 2021, vol. 140, pp. 290–302. https://doi.org/10.1016/j.sajb.2020.05.015
Sun, X., Ma, L., Lux, P.E., et al., The distribution of phosphorus, carotenoids and tocochromanols in grains of four Chinese maize (Zea mays L.) varieties, Food Chem., 2022, vol. 367, p. 130725. https://doi.org/10.1016/j.foodchem.2021.130725
Von Lintig, J., Moon, J., and Babino, D., Molecular components affecting ocular carotenoid and retinoid homeostasis, Prog. Retinal Eye Res., 2020, vol. 80, p. 100864. https://doi.org/10.1016/j.preteyeres.2020.100864
Welham, S.J., Gezan, S.A., Clark, S.J., et al., Statistical Methods in Biology: Design and Analysis of Experiments and Regression, Boca Raton: CRC Press, 2014.
Book
Yan, J., Kandianis, C.B., Harjes, C.E., et al., Rare genetic variation at Zea mays crtRB1 increases betacarotene in maize grain, Nat. Genet., 2010, vol. 42, pp. 322–327. https://doi.org/10.1038/ng.551
Zafar, J., Aqeel, A., Shah, F.I., et al., Biochemical and immunological implications of Lutein and Zeaxanthin, Int. J. Mol. Sci., 2021, vol. 22, no. 20, p. 10910. https://doi.org/10.3390/ijms222010910
Zatyshniak, O.V., Cherchel, V.Yu., Dziubetskyi, B.V., et al., Marker-assisted selection for the gene of β-carotene hydroxylase in maize, Factory Exp. Evol. Org., 2020, vol. 27, pp. 83–88. https://doi.org/10.7124/FEEO.v27.1307
Zhai, S.N., Xia, X.C., and He, óL.H., Carotenoids in staple cereals: metabolism, regulation and genetic manipulation, Front. Plant Sci., 2016, vol. 7, p. 1197. https://doi.org/10.3389/fpls.2016.01197
Zurak, D., Grbeša, D., Duvnjak, M., et al., Carotenoid content and bioaccessibility in commercial maize hybrids, Agriculture, 2021, vol. 11, no. 7, p. 586. https://doi.org/10.3390/agriculture11070586