Цитологія і генетика 2023, том 57, № 4, 42-44
Cytology and Genetics 2023, том 57, № 4, 347–355, doi: https://www.doi.org/https://doi.org/10.3103/S0095452723040035

Bialelic pathogenic (c.830G>A (p.r277Q)) variant disrupting the GNE gene function and causes Nonaka myopathy phenotype

Doğan M., Akbulut E., Gezdirici A., Eroz R., Bozdoğan S.T.

  1. Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
  2. Department of Bioengineering, Malatya Turgut Ozal University, Malatya, Turkey
  3. Duzce University Medical Faculty, Department of Medical Genetics, Duzce, Turkey
  4. Cukurova University Medical Faculty, Department of Medical Genetics, Adana, Turkey

РЕЗЕМЕ. Міопатію Нонака (MIM 605820) викликають гомозиготні патогенні варіанти в гені GNE. Це міопатія з раннім початком розвитку в дорослих, яка успадковується рецесивно та за якої зберігаються чотириголові м’язи і виникає двостороннє обвисання стіп, що зазвичай спричинено слабкістю переднього великогомілкового м’язу. У пацієнтів із міопатією Нонака дещо вищий рівень креатинкінази сироватки, повільне прогресування м’язової слабкості та втрата здатності самостійно переміщатися розвиваються через 15–20 років. Поточне дослідження спрямоване на підвищення обізнаності про міопатію Нонака, яка виникає як рідкісний фенотип через патогенні варіанти в гені GNE. Проводиться детальна реєстрація історій хвороби та клінічних даних. Було проведено повне секвенування екзому і косегрегаційний аналіз родин за допомогою секвенування Сенгера. Також було створено модель гомології мутантного білка за використання алгоритму ProMod3. Ми ідентифікували діалельний патогенний варіант (c.830G>A) у гені GNE, який пояснює клінічний стан пацієнтів. Ми представляємо основні результати двох дітей із однієї родини, які мають міопатію Нонака, а також детальні клінічні та генетичні профілі пацієнтів і тривимірну модель мутантного білку GNE. Ми вважаємо, що клінічні характеристики та вплив варіанта (c.830G>A) сприятимуть нашому розумінню ролі гена GNE у патогенезі міопатії Нонака.

Ключові слова: міопатія GNE, дистальна міопатія, сіалова кислота, хвороба Нонака, рідкісні захворювання

Цитологія і генетика
2023, том 57, № 4, 42-44

Current Issue
Cytology and Genetics
2023, том 57, № 4, 347–355,
doi: https://doi.org/10.3103/S0095452723040035

Повний текст та додаткові матеріали

Цитована література

Argov, Z., GNE myopathy: a personal trip from bedside observation to therapeutic trials, Acta Myol., 2014, vol. 33, no. 2, pp. 107–110.

Awasthi, K., Srivastava, A., Bhattacharya, S., et al., Tissue specific expression of sialic acid metabolic pathway: role in GNE myopathy, J. Muscle Res. Cell Motil., 2021, vol. 42, no. 1, pp. 99–116. https://doi.org/10.1007/s10974-020-09590-7

Barp, A., Mosca, L., and Sansone, V.A., Facilitations and hurdles of genetic testing in neuromuscular disorders, Diagnostics (Basel), 2021, vol. 11, p. 701. https://doi.org/10.3390/diagnostics11040701

Buchan, D.W., Minneci, F., Nugent, T.C., et al., Scalable web services for the PSIPRED Protein Analysis Workbench, Nucleic Acids Res., 2013, vol. 41, no. W1, pp. W349–W357. https://doi.org/10.1093/nar/gkt381

Carrillo, N., Malicdan, M.C., and Huizing, M., GNE myopathy: etiology, diagnosis, and therapeutic challenges, Neurotherapeutics, 2018, vol. 15, no. 4, pp. 900–914. https://doi.org/10.1007/s13311-018-0671-y

Carrillo, N., Malicdan, M.C., and Gahl, W.A., Safety and efficacy of N-acetylmannosamine (ManNAc) in patients with GNE myopathy: an open-label phase 2 study, Genet. Med., 2021, vol. 23, no. 11, pp. 2067–2075. https://doi.org/10.1038/s41436-021-01259-x

Celeste, F.V., Vilboux, T., Ciccone, C., et al., Mutation update for GNE gene variants associated with GNE myopathy, Hum. Mutat., 2014, vol. 35, no. 8, pp. 915–926. https://doi.org/10.1002/humu.22583

Cerino, M., Gorokhova, S., Behin, A., et al., Novel pathogenic variants in a french cohort widen the mutational spectrum of GNE myopathy, J. Neuromuscular Dis., 2015, vol. 2, no. 2, pp. 131–136. https://doi.org/10.3233/JND-150074

Chen, V.B., Arendall, W.B., Headd, J.J., et al., MolProbity: all-atom structure validation for macromolecular crystallography, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2010, vol. 66, no. 1, pp. 12–21. https://doi.org/10.1107/S0907444909042073

Chen, Y., Xi, J., Zhu, W., et al., Correction: GNE myopathy in Chinese population: hotspot and novel mutations, J. Hum. Genet., 2019, vol. 64, no. 3, p. 269. https://doi.org/10.1038/s10038-018-0547-3

Crowe, K.E., Zygmunt, D.A., and Martin, P.T., Visualizing muscle sialic acid expression in the GNED207VTgGne-/- Cmah-/- model of GNE myopathy: A comparison of dietary and gene therapy approaches, J. Neuromuscular Dis., 2022, vol. 9, no. 1, pp. 53–71. https://doi.org/10.3233/JND-200575

Effertz, K., Hinderlich, S., and Reutter, W., Selective loss of either the epimerase or kinase activity of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase due to site-directed mutagenesis based on sequence alignments, J. Biol. Chem., 1999, vol. 274, no. 40, pp. 28771–28778. https://doi.org/10.1074/jbc.274.40.28771

Eisenberg, I., Avidan, N., Potikha, T., et al., The UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene is mutated in recessive hereditary inclusion body myopathy, Nat. Genet., 2001, vol. 29, no. 1, pp. 83–87. https://doi.org/10.1038/ng718

Grecu, N., Villa, L., Cavalli, M., et al., Motor axonal neuropathy associated with GNE mutations, Muscle Nerve, 2021, vol. 63, no. 3. pp. 396–401. https://doi.org/10.1002/mus.27102

Grover, S., and Arya, R., Role of UDP-N-acetylglucosamine2-epimerase/N-acetylmannosamine kinase (GNE) in β1-integrin-mediated cell adhesion, Mol. Neurobiol., 2014, vol. 50, no. 2, pp. 257–273. https://doi.org/10.1007/s12035-013-8604-6

Hanisch, F., Weidemann, W., Grossmann, M., et al., Sialylation and muscle performance: sialic acid is a marker of muscle ageing, PLoS One, 2013, vol. 8, no. 12, p. e80520. https://doi.org/10.1371/journal.pone.0080520

Harazi, A., Becker-Cohen, M., Zer, H., et al., The interaction of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) and alpha-actinin 2 is altered in GNE myopathy M743T mutant, Mol. Neurobiol., 2017, vol. 54, no. 4, pp. 2928–2938. https://doi.org/10.1007/s12035-016-9862-x

Kazamel, M., Sorenson, E.J., and Milone, M., Clinical and electrophysiological findings in hereditary inclusion body myopathy compared with sporadic inclusion body myositis, J. Clin. Neuromuscular Dis., 2016, vol. 17, no. 4, pp. 190–196. https://doi.org/10.1097/CND.0000000000000113

Koroglu, C., Yilmaz, R., Sorgun, M.H., et al., GNE missense mutation in recessive familial amyotrophic lateral sclerosis, Neurogenetics, 2017, vol. 18, no. 4, pp. 237–243. https://doi.org/10.1007/s10048-017-0527-3

Krause, S., Hinderlich, S., Amsili, S., et al., Localization of UDP-GlcNAc 2-epimerase/ManAc kinase (GNE) in the Golgi complex and the nucleus of mammalian cells, Exp. Cell Res., 2005, vol. 304, no. 2, pp. 365–379. https://doi.org/10.1016/j.yexcr.2004.11.010

Lv, X.Q., Xu, L., Lin, P.F., et al., Clinical, genetic, and pathological characterization of GNE myopathy in China, Neurol. Sci., 2022, vol. 43, pp. 4483–4491. https://doi.org/10.1007/s10072-022-05938-8

Nishino, I., Carrillo-Carrasco, N., and Argov, Z., GNE myopathy: current update and future therapy, J. Neurol. Neurosurg. Psychiatry, 2015. vol. 86. no. 4. pp. 385–392. https://doi.org/10.1136/jnnp-2013-307051

Pandurangan, A.P., Ochoa-Montano, B., Ascher, D.B., et al., SDM: a server for predicting effects of mutations on protein stability, Nucleic Acids Res., 2017, vol. 45, no. W1, pp. W229–W235. https://doi.org/10.1093/nar/gkx439

Pires, D.E., Ascher, D.B., and Blundell, T.L., DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach, Nucleic Acids Res., 2014a, vol. 42, pp. W314–W319. https://doi.org/10.1093/nar/gku411

Pires, D.E., Ascher, D.B., and Blundell, T.L., mCSM: predicting the effects of mutations in proteins using graph-based signatures, Bioinformatics, 2014b, vol. 30, no. 3, pp. 335–342. https://doi.org/10.1093/bioinformatics/btt691

Pogoryelova, O., Cammish, P., Mansbach, H., et al., Phenotypic stratification and genotype-phenotype correlation in a heterogeneous, international cohort of GNE myopathy patients: First report from the GNE myopathy Disease Monitoring Program, registry portion, Neuromuscular Disord., 2018, vol. 28, no. 2, pp. 158–168. https://doi.org/10.1016/j.nmd.2017.11.001

Pogoryelova, O., Gonzalez Coraspe, J.A., Nikolenko, N., et al., GNE myopathy: from clinics and genetics to pathology and research strategies, Orphanet J. Rare Dis., 2018, vol. 13, no. 1, p. 70. https://doi.org/10.1186/s13023-018-0802-x

Pogoryelova, O., Wilson, I.J., Mansbach, H., et al., GNE genotype explains 20% of phenotypic variability in GNE myopathy, Neurol. Genet., 2019, vol. 5, no. 1, p. e308. https://doi.org/10.1212/NXG.0000000000000308

Previtali, S.C., Zhao, E., Lazarevic, D., et al., Expanding the spectrum of genes responsible for hereditary motor neuropathies, J. Neurol. Neurosurg. Psychiatry, 2019, vol. 90, no. 10, pp. 1171–1179. https://doi.org/10.1136/jnnp-2019-320717

Richards, S., Aziz, N., Bale, S., et al., Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology, Genet. Med., 2015, vol. 17, no. 5, pp. 405–424. https://doi.org/10.1038/gim.2015.30

Rodrigues, C.H.M., Myung, Y., Pires, D.E.V., et al., mCSM-PPI2: predicting the effects of mutations on protein-protein interactions, Nucleic Acids Res., 2019, vol. 47, no. W1, pp. W338–W344. https://doi.org/10.1093/nar/gkz383

Rodrigues, C.H.M., Pires, D.E.V., and Ascher, D.B., DynaMut2: Assessing changes in stability and flexibility upon single and multiple point missense mutations, Prot. Sci., 2021, vol. 30, no. 1, pp. 60–69. https://doi.org/10.1002/pro.3942

Savarese, M., Sarparanta, J., Vihola, A., et al., Panorama of the distal myopathies, Acta Myologica, 2020, vol. 39, no. 4, pp. 245–265. https://doi.org/10.36185/2532-1900-028

Schauer, R., Sialic acids as regulators of molecular and cellular interactions, Curr. Opin. Struct. Biol., 2009, vol. 19, no. 5, pp. 507–514. https://doi.org/10.1016/j.sbi.2009.06.003

Schwarzkopf, M., Knobeloch, K.P., Rohde, E., et al., Sialylation is essential for early development in mice, Proc. Natl. Acad. Sci., 2002, vol. 99, no. 8, pp. 5267–5270. https://doi.org/10.1073/pnas.072066199

Sharma, S., Chanana, P., Bharadwaj, R., et al., Functional characterization of GNE mutations prevalent in Asian subjects with GNE myopathy, an ultra-rare neuromuscular disorder, Biochimie, 2022, vol. 7, no. 199, pp. 36–45. https://doi.org/10.1016/j.biochi.2022.03.014

Stasche, R., Hinderlich, S., Weise, C., et al., A bifunctional enzyme catalyzes the first two steps in N-acetylneuraminic acid biosynthesis of rat liver, J. Biol. Chem., 1997, vol. 272, no. 39, pp. 24319–324. https://doi.org/10.1074/jbc.272.39.24319

Waterhouse, A., Bertoni, M., Bienert, S., et al., SWISS-MODEL: homology modelling of protein structures and complexes, Nucleic Acids Res., 2018, vol. 46, no. W1, pp. W296–W303. https://doi.org/10.1093/nar/gky427

Weidemann, W., Klukas, C., Klein, A., et al., Lessons from GNE-deficient embryonic stem cells: sialic acid biosynthesis is involved in proliferation and gene expression, Glycobiology, 2010, vol. 20, no. 1, pp. 107–117. https://doi.org/10.1093/glycob/cwp153

Wiederstein, M., and Sippl, M.J., ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins, Nucleic Acids Res., 2007, vol. 35, pp. W407–W410. https://doi.org/10.1093/nar/gkm290

Xu, J., and Zhang, Y., How significant is a protein structure similarity with TM-score = 0.5?, Bioinformatics, 2010, vol. 26, no. 7, pp. 889−895. https://doi.org/10.1093/bioinformatics/btq066

Yubero, D., Natera-de Benito, D., Pijuan, J., et al., The increasing impact of translational research in the molecular diagnostics of neuromuscular diseases, Int. J. Mol. Sci., 2021, vol. 22, no. 8, p. 4274. https://doi.org/10.3390/ijms22084274

Zhang, K.Y., Duan, H.Q., Li, Q.X., et al., Expanding the clinicopathological-genetic spectrum of GNE myopathy by a Chinese neuromuscular centre, J. Cell Mol. Med., 2021, vol. 25, no. 22, pp. 10494–503. https://doi.org/10.1111/jcmm.16978

Zhu, W., Mitsuhashi, S., Yonekawa, T., et al., Missing genetic variations in GNE myopathy: rearrangement hotspots encompassing 5′UTR and founder allele, J. Hum. Genet., 2017, vol. 62, no. 2, pp. 159–166. https://doi.org/10.1038/jhg.2016.134