Цитологія і генетика 2023, том 57, № 4, 36-38
Cytology and Genetics 2023, том 57, № 4, 320–334, doi: https://www.doi.org/https://doi.org/10.3103/S0095452723040096

Genic SSR development and diversity assessment of persian halophytic grass, Aeluropus littoralis

Meidansary M., Nasiri N., Shokri E., Askari H.

  1. Department of plant breeding and biotechnology, Faculty of Crop Science, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran
  2. Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran
  3. Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
  4. Department of Biotechnology, Faculty of New Technologies and Energy Engineering, Shahid Beheshti University (G.C), Tehran, IR Iran

РЕЗЮМЕ. Aeluropus littoralis – це цінна галофітова трава, яка належить до одного з пшеницею сімейства і використовується як корм для тварин. Хоча в A. littoralis є потенціал можливого генетичного ресурсу для покращення стійкості економічно важливих сільськогосподарських рослин до солей та посухи, для цієї рослини не було розроблено жодних SSR-маркерів. Головна мета полягала в швидкій розробці набору генних SSR-маркерів для A. littoralis. Для ідентифікації EST-SSR проводили повторний аналіз ненадлишкових послідовностей EST Aeluropus і оцінку переносимості 110 локусів рису та пшениці з багатьма SSR. Потім вибрані локуси EST-SSR та деякі фізіологічні ознаки, зокрема вміст Na+, K+ та попелу, використали для характеризування маркерів та оцінки генетичного різноманіття в ізолятах A. littoralis, зібраних по всій країні. Результати продемонстрували, що 6.7 % записів EST щодо A. littoralis містили мотиви SSR, які було використано для розробки 18 пар праймерів (ALES). Крім того, було показано можливість переносу 48 локусів SSR (GDES) із 110 від Gramineae до A. littoralis на основі профілів ПЛР. Зрештою генотипне кластерування на основі маркерів EST-SSR дозволило поділити ізоляти на сім груп. Також ізоляти було категоризовано в шість груп за фізіологічними ознаками. Наші результати продемонстрували значне різноманіття (близько 33 %) кодуючих участків ізолятів іранських рослин Aeluropus. Результати генотипного та фізіологічного кластерування частково узгоджувалися між собою і більшість груп відповідала географічним регіонам.

Ключові слова: EST-SSR, повторний аналіз EST, генетична варіація

Цитологія і генетика
2023, том 57, № 4, 36-38

Current Issue
Cytology and Genetics
2023, том 57, № 4, 320–334,
doi: https://doi.org/10.3103/S0095452723040096

Повний текст та додаткові матеріали

Цитована література

Khodashenas, M., Aeluropus peterganicus (Poaceae), a new species from Iran, Iran. J. Bot., 2008, vol. 14, no. 1, pp. 13–15.

Khodashenas, M., Two new records and a new combination of the genus Aeluropus Trin (Poaceae) for the flora of Iran, Iran. J. Bot., 2009, vol. 15, no. 1, pp. 61–62.

Watson, L. and Dallwitz, M.J., The Grass Genera of the World, Wallingford: CAB Int., 1992. https://doi.org/10.1017/S0021859600076668

Zouari, N., Saad, R.B., Legavre, T., Azaza, J., Sabau, X., Jaoua, M., Masmoudi, K., and Hassairi, A., Identification and sequencing of ESTs from the halophyte grass Aeluropus littoralis, Gene, 2007, vol. 404, nos. 1–2, pp. 61–69. https://doi.org/10.1016/j.gene.2007.08.021

Barhoumi, Z., Djebali, W., Abdelly, C., Chaïbi, W., and Smaoui, A., Ultrastructure of Aeluropus littoralis leaf salt glands under NaCl stress, Protoplasma, 2008, vol. 233, nos. 3–4, pp. 195–202. https://doi.org/10.1007/s00709-008-0003-x

Nasiri, N., Shokri, E., and Nematzadeh, G.A., Aeluropus littoralis NaCl-induced vacuolar H+-ATPase Subunit c: Molecular cloning and expression analysis, Russ. J. Genet., 2012, vol. 48, no. 12, pp. 1199–1206. https://doi.org/10.1134/S1022795412080054

Younesi-Melerdi, E., Nematzadeh, G., and Shokri, E., Codon bias patterns in photosynthetic genes of halophytic grass Aeluropus littoralis, J. Plant Mol. Breed., 2014, vol. 2, no. 1, pp. 12–20. https://doi.org/10.22058/JPMB.2014.8425

Wang, I.J., Glor, R.E., and Losos, J.B., Quantifying the roles of ecology and geography in spatial genetic divergence, Ecol. Lett., 2013, vol. 16, no. 2, pp. 175–182. https://doi.org/10.1111/ele.12025

Singh, R.K., Jena, S.N., Khan, S., Yadav, S., Banarjee, N., Raghuvanshi, S., Bhardwaj, V., Dattamajumder, S.K., Kapur, R., Solomon, S., and Swapna, M., Development, cross-species/genera transferability of novel EST-SSR markers and their utility in revealing population structure and genetic diversity in sugarcane, Gene, 2013, vol. 524, no. 2, pp. 309–329. https://doi.org/10.1016/j.gene.2013.03.125

Ebrahimi, S., Seyed, T.B., and Sharif, N.B., Microsatellite isolation and characterization in pomegranate (Punica granatum L.), Iran. J. Biotechnol., 2010, vol. 8, no. 3, pp. 156–163.

Ma, J.Q., Ma, C.L., Yao, M.Z., Jin, J.Q., Wang, Z.L., Wang, X.C., and Chen, L., Microsatellite markers from tea plant expressed sequence tags (ESTs) and their applicability for cross-species/genera amplification and genetic mapping, Sci. Hortic. (Amsterdam, Neth.), 2012, vol. 134, no. 1, pp. 167–175. https://doi.org/10.1016/j.scienta.2011.10.029

Parthiban, S., Govindaraj, P., and Senthilkumar, S., Comparison of relative efficiency of genomic SSR and EST-SSR markers in estimating genetic diversity in sugarcane, 3 Biotech, 2018, vol. 8, no. 3, pp. 144–150. https://doi.org/10.1007/s13205-018-1172-8

Mohammadzadeh, F., Monirifar, H., Saba, J., Valizadeh, M., Haghighi, A.R., Zanjani, B.M., Barghi, M., and Tarhriz, V., Genetic variation among Iranian alfalfa (Medicago sativa L.) populations based on RAPD markers, Bangladesh J. Plant Taxon., 2011, vol. 18, no. 2, pp. 93–104. https://doi.org/10.3329/bjpt.v18i2.9296

Zhou, Q., Luo, D., Ma, L., Xie, W., Wang, Y., Wang, Y., and Liu, Z., Development and cross-species transferability of EST-SSR markers in Siberian wildrye (Elymus sibiricus L.) using Illumina sequencing, Sci. Rep., 2016, vol. 6, p. 20549. https://doi.org/10.1038/srep20549

Liu, C., Fan, B., Cao, Z., Su, Q., Wang, Y.A., Zhang, Z., Wu, J., and Tian, J., A deep sequencing analysis of transcriptomes and the development of EST-SSR markers in mungbean (Vigna radiata), J. Genet., 2016, vol. 95, no. 3, pp. 527–535. https://doi.org/10.1007/s12041-016-0663-9

Salimi, H., Bahar, M., Mirlohi, A., and Talebi, M., Assessment of the genetic diversity among potato cultivars from different geographical areas using the genomic and EST microsatellites, Iran. J. Biotechnol., 2016, vol. 14, no 4, p. 270. https://doi.org/10.15171/ijb.1280

Kantety, R.V., LaRota, M., Matthews, D.E., and Sorrells, M.E., Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat, Plant Mol. Biol. Rep., 2002, vol. 48, no. 5, pp. 501–510. https://doi.org/10.1023/A:1014875206165

Yang, Z.J., Peng, Z.S., and Yang, H., Identification of novel and useful EST-SSR markers from de novo transcriptome sequence of wheat (Triticum aestivum L.), Genet. Mol. Res., 2016, vol. 15, no. 1, p. 15017509. https://doi.org/10.4238/gmr.15017509

Jo, W.S., Kim, H.Y., and Kim, K.M., Development and characterization of polymorphic EST based SSR markers in barley (Hordeum vulgare), 3 Biotech, 2017, vol. 7, no. 4, p. 265. https://doi.org/10.1007/s13205-017-0899-y

Yu, J.K., LaRota, M., Kantety, R.V., and Sorrells, M.E., EST derived SSR markers for comparative mapping in wheat and rice, Mol. Genet. Genomics, 2004, vol. 271, no. 6, pp. 742–751. https://doi.org/10.1007/s00438-004-1027-3

Ukoskit, K., Posudsavang, G., Pongsiripat, N., Chatwachirawong, P., Klomsa-ard, P., Poomipant, P., and Tragoonrung, S., Detection and validation of EST-SSR markers associated with sugar-related traits in sugarcane using linkage and association mapping, Genomics, 2019, vol. 111, no. 1, pp. 1–9. https://www.sciencedirect.com/science/article/pii/S0888754318300272.

Ashraf, J., Malik, W., Iqbal, M.Z., Ali, K.A., Qayyum, A., Noor, E., Abid, M.A., Naseer, C.H., and Ahmad, M.Q., Comparative analysis of genetic diversity among Bt cotton genotypes using EST-SSR, ISSR and morphological markers, J. Agric. Sci. Technol., 2016, vol. 18, no. 2, pp. 517–531.

Arbeiter, A.B., Hladnik, M., Jakše, J., and Bandelj, D., Identification and validation of novel EST-SSR markers in olives, Sci. Agric., 2017, vol. 74, no. 3, pp. 215–225. https://doi.org/10.1590/1678-992x-2016-0111

Jiang, Y., Li, H., Zhang, J., Xiang, J., Cheng, R., and Liu, G., Whole Genomic EST-SSR development based on high-throughput transcript sequencing in Proso millet (Panicum miliaceum), Int. J. Agric. Biol., 2018, vol. 20, no. 3, pp. 617–620. https://doi.org/10.17957/IJAB/15.0531

Wu, B.D., Fan, R., Hu, L.S., Wu, H.S., and Hao, C.Y., Genetic diversity in the germplasm of black pepper determined by EST-SSR markers, Genet. Mol. Res., 2016, vol. 15, no. 1, p. 8099. https://doi.org/10.4238/gmr.15018099

García-Gómez, B., Razi, M., Salazar, J.A., Prudencio, A.S., Ruiz, D., Dondini, L., and Martínez-Gómez, P., Comparative analysis of SSR markers developed in exon, intron, and intergenic regions and distributed in regions controlling fruit quality traits in Prunus species: genetic diversity and association studies, Plant Mol. Biol. Rep., 2018, vol. 36, no. 1, pp. 23–35. https://doi.org/10.1007/s11105-017-1058-7

Wang, M.L., Dzievit, M., Chen, Z., Morris, J.B., Norris, J.E., Barkley, N.A., Tonnis, B., and GA, Yu, J., Genetic diversity and population structure of castor (Ricinus communis L.) germplasm within the US collection assessed with EST-SSR markers, Genome, 2016, vol. 60, no. 3, pp. 193–200. https://doi.org/10.1139/gen-2016-0116

Chai, L., Biswas, M.K., Yi, H., Guo, W., and Deng, X., Transferability, polymorphism and effectiveness for genetic mapping of the Pummelo (Citrus grandis Osbeck) EST-SSR markers, Sci. Hortic. (Amsterdam, Neth.), 2013, vol. 155, pp. 85–91. https://doi.org/10.1016/j.scienta.2013.02.024

Yu, J.K., Dake, T.M., Singh, S., Benscher, D., Li, W., Gill, B., and Sorrells, M.E., Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat, Genome, 2004, vol. 47, no. 5, pp. 805–818. https://doi.org/10.1139/g04-057

Dellaporta, S.L., Wood, J., and Hicks, J.B., A plant DNA minipreparation: Version II, Plant Mol. Biol. Rep., 1983, vol. 1, no. 4, pp. 19–21. https://doi.org/10.1007/BF02712670

Rohlf, F.J., Numeric taxonomy and multivariate analysis system NTSys-PC Version 1.80 Exeter Software, 1993.

Nei, M. and Li, W.H., Mathematical model for studying genetic variation in terms of restriction endonucleases, Proc. Natl. Acad. Sci. U. S. A., 1979, vol. 76, no. 10, pp. 5269–5273. https://doi.org/10.1073/pnas.76.10.5269

Excoffier, L., Smouse, P.E., and Quattro, J.M., Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data, Genetics, 1992, vol. 131, no. 2, pp. 479–491.

Rahemi, A., Fatahi, R., Ebadi, A., Taghavi, T., Hassani, D., Gradziel, T., Folta, K., and Chaparro, J., Genetic diversity of some wild almonds and related Prunus species revealed by SSR and EST-SSR molecular markers, Plant Syst. Evol., 2012, vol. 298, no. 1, pp. 173–192. https://doi.org/10.1007/s00606-011-0536-x

Ahmadi, J. and Fotokian, M.H., Identification and mapping of quantitative trait loci associated with salinity tolerance in rice (Oryza sativa) using SSR markers, Iran. J. Biotechnol., 2011, vol. 9, no. 1, pp. 21–30.

Wang, J., Chen, Z., Jin, S., Hu, Z., Huang, Y., and Diao, Y., Development and characterization of simple sequence repeat (SSR) markers based on a full-length cDNA library of Napier Grass (Pennisetum purpureum Schum), Gene Genomics, 2017, vol. 39, no. 12, pp. 1297–1305. https://doi.org/10.1007/s13258-017-0536-5

Jin, J.Q., Li, S.F., Gong, X.C., Lu, M.Z., Yao, Y.L., Xin, Y., and Cui, H.R., Analysis of SSR information in EST resource of tea plants (Camellia sinensis), Bull. Sci. Technol., 2006, vol. 4, pp. 471–476.

Zhu, Y., Hao, Y., Wang, K., Wu, C., Wang, W., Qi, J., and Zhou, J., Analysis of SSRs information and development of SSR markers from walnut ESTs, Int. J. Fruit Sci., 2009, vol. 26, no. 3, pp. 394–398.

Shamasbi, F.V., Nasiri, N., and Shokri, E., Genetic diversity of Persian ecotypes of Indian walnut (Aeluropus littoralis (Gouan) Pari.) by AFLP and ISSR markers, Cytol. Genet., 2018, vol. 52, no. 3, pp. 222–230. https://doi.org/10.3103/S009545271803012X

Cortese, L.M., Honig, J., Miller, C., and Bonos, S.A., Genetic diversity of twelve switchgrass populations using molecular and morphological markers, BioEnergy Res., 2010, vol. 3, no. 3, pp. 262–271. https://doi.org/10.1007/s12155-010-9078-2