Цитологія і генетика 2023, том 57, № 6, 11-26
Cytology and Genetics 2023, том 57, № 6, 524–537, doi: https://www.doi.org/https://doi.org/10.3103/S0095452723060099

5S рибосомна ДНК у родині Plumbaginaceae

Тинкевич Ю.О., Валін М.О., Мойсієнко І.І., Панчук І.І., Волков Р.А.

  1. Чернівецький національний університет імені Юрія Федьковича, вул. Коцюбинського, 2, 58012, Чернівці, Україна
  2. Херсонський державний університет, вул. Університетська, 27, Херсон, 73000, Україна

Тандемно організовані повторювані ділянки (повтори), які кодують 5S рРНК (5S рДНК) є життєво важливим компонентом геномів еукаріот. Зазвичай повтори 5S рДНК є високо подібними в межах геному завдяки концертному характеру еволюції цього типу повторів. Кожен повтор 5S рДНК складається з еволюційно консервативної кодувальної ділянки (coding sequence – CDS) та мінливого міжгенного спейсера (intergenic spacer – IGS). 5S рДНК являє собою популярну модель для вивчення молекулярної еволюції повторюваних послідовностей, а висока швидкість накопичення мутацій у IGS обумовлює його широке використання у філогенетичному аналізі близькоспоріднених  таксонів. Тим не менш, 5S рДНК все ще залишається недослідженою для багатьох груп вищих рослин, і зокрема, родини Plumbaginaceae. Деякі таксони цієї родини є ендеміками Півдня України, які занесені до Червоної книги. Проте, їх таксономічний статус є суперечливим, і для його прояснення необхідно застосування методів молекулярної філогенетики. У цій роботі ми дослідили молекулярну організацію 5S рДНК  представників чотирьох  родів найбільшої  у родині Plumbaginaceae триби Limonieae. Встановлено, що у CDS 5S рДНК представників родів Limonium, Armeria та Ceratolimon наявні поодинокі мутації, які не заважають формуванню вторинної структури 5S рРНК. На противагу цьому, у геномах видів роду  Goniolimon, окрім функціонально повноцінних повторів 5S рДНК знайдено численні псевдогени, що еволюціонують неконцертним способом та містять багато мутацій у CDS, які порушують вторинну структуру 5S рРНК. Значна філогенетична дистанція між представниками підродів Pteroclados та Limonium роду Limonium свідчить, що Pteroclados може вважатись окремим родом. Висока швидкість молекулярної еволюції робить IGS 5S рДНК зручним інструментом для реконструкції філогенетичних відносин в межах досліджуваних родів триби Limonieae та баркодингу українських ендеміків роду Limonium.

Ключові слова: 5S рДНК, генетичний поліморфізм, молекулярна еволюція та філогенія, повторювані послідовності, псевдогени, Armeria, Ceratolimon, Goniolimon, Limonium

Цитологія і генетика
2023, том 57, № 6, 11-26

Current Issue
Cytology and Genetics
2023, том 57, № 6, 524–537,
doi: https://doi.org/10.3103/S0095452723060099

Повний текст та додаткові матеріали

Цитована література

Anisimova, M. and Gascuel, O., Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative, Syst. Biol., 2006, vol. 55, pp. 539–552. https://doi.org/10.1080/10635150600755453

Arndt, P.F., Petrov, D.A., and Hwa, T., Distinct changes of genomic biases in nucleotide substitution at the time of mammalian radiation, Mol. Biol. Evol., 2003, vol. 20, no. 11, pp. 1887–1896. https://doi.org/10.1093/molbev/msg204

Baker, W.J., Hedderson, T.A., and Dransfield, J., Molecular phylogenetics of Calamus (Palmae) and related rattan genera based on 5S nrDNA spacer sequence data, Mol. Phylogenet. Evol., 2000, vol. 14, no. 2, pp. 218–231. https://doi.org/10.1006/mpev.1999.0697

Baker, W.J., Bailey, P., Barber, V., Barker, A., Bellot, S., et al., A comprehensive phylogenomic platform for exploring the angiosperm tree of life, Syst. Biol., 2022, vol. 71, no. 2, pp. 301–319. https://doi.org/10.1093/sysbio/syab035

Barciszewska, M.Z., Szymański, M., Erdmann, V.A., and Barciszewski, J., Structure and functions of 5S rRNA, Acta Biochim. Pol., 2001, vol. 48, no. 1, pp. 191–198. https://doi.org/10.18388/abp.2001_5126

Besendorfer, V., Krajačić-Sokol, I., Jelenić, S., Puizina, J., Mlinarec, J., Sviben, T., and Papeš, D., Two classes of 5S rDNA unit arrays of the silver fir, Abies alba Mill.: structure, localization and evolution, Theor. Appl. Genet., 2005, vol. 110, pp. 730–741. https://doi.org/10.1007/s00122-004-1899-y

Borchsenius, F., FastGap 1.2, Department of Biosciences, Aarhus University, Denmark, Published online at 2009. http://www.aubot.dk/FastGap_home.htm.

Burland, T.G., DNASTAR’s Lasergene sequence analysis software, in Bioinformatics Methods and Protocols, 1999, pp. 71–91. https://doi.org/10.1385/1-59259-192-2:71

Chen, G., Stepanenko, A., and Borisjuk, N., Mosaic arrangement of the 5S rDNA in the aquatic plant Landoltia punctata (Lemnaceae), Front. Plant Sci., 2021, vol. 12, p. 678689. https://doi.org/10.3389/fpls.2021.678689

Cherevatov, O.V. and Volkov, R.A., Organization of 5S ribosomal DNA of Melitaea trivia, Cytol. Genet., 2011, vol. 45, no. 2, pp. 115–120. https://doi.org/10.3103/S0095452711020034

Christenhusz, M.J. and Byng, J.W., The number of known plants species in the world and its annual increase, Phytotaxa, 2016, vol. 261, no. 3, pp. 201–217. https://doi.org/10.11646/PHYTOTAXA.261.3.1

Ciganda, M. and Williams, N., Eukaryotic 5S rRNA biogenesis, WIREs RNA, 2011, vol. 2, no. 4, pp. 523–533.

Cloix, C., Yukawa, Y., Tutois, S., Sugiura, M., and Tourmente, S., In vitro analysis of the sequences required for transcription of the Arabidopsis thaliana 5S rRNA genes, Plant J., 2003, vol. 35, no. 2, pp. 251–261. https://doi.org/10.1046/j.1365-313X.2003.01793.x

Cronn, R.C., Zhao, X., Paterson, A.H., and Wendell, J.F., Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons, J. Mol. Evol., 1996, vol. 42, pp. 685–705. https://doi.org/10.1007/BF02338802

Didukh, Y., Red Data Book of Ukraine. Roslynnyi svit (Red Data Book of Ukraine. Plant Kingdom), Kyiv: Globalconsulting, 2009.

Douet, J. and Tourmente, S., Transcription of the 5S rRNA heterochromatic genes is epigenetically controlled in Arabidopsis thaliana and Xenopus laevis, Heredity, 2007, vol. 99, pp. 5–13. https://doi.org/10.1038/sj.hdy.6800964

Duncan, B.K. and Miller, J.H., Mutagenic deamination of cytosine residues in DNA, Nature, 1980, vol. 287, no. 5782, pp. 560–561. https://doi.org/10.1038/287560a0

Eirín-López, J.M., Rebordinos, L., Rooney, A.P., and Rozas, J., The birth-and-death evolution of multigene families revisited, Repetitive DNA, 2012, vol. 7, pp. 170–196. https://doi.org/10.1159/000337119

Fulneček, J., Matyášek, R., Kovařík, A., and Bezděk, M., Mapping of 5-methylcytosine residues in Nicotiana tabacum 5S rRNA genes by genomic sequencing, Mol. Gen. Genet. MGG, 1998, vol. 259, pp. 133–141. https://doi.org/10.1007/s004380050798

Fulneček, J., Lim, K.Y., Leitch, A.R., Kovařik, A., and Matyášek, R., Evolution and structure of 5S rDNA loci in allotetraploid Nicotiana tabacum and its putative parental species, Heredity, 2002, vol. 88, no. 1, pp. 19–25. https://doi.org/10.1038/sj.hdy.6800001

Garcia, S. and Kovařík, A., Dancing together and separate again: gymnosperms exhibit frequent changes of fundamental 5S and 35S rRNA gene (rDNA) organization, Heredity, 2013, vol. 111, no. 1, pp. 23–33. https://doi.org/10.1038/hdy.2013.11

Garcia, S., Gálvez, F., Gras, A., Kovařík, A., and Garnatje, T., Plant rDNA database: update and new features, Database, 2014, vol. 2014, p. bau063. https://doi.org/10.1093/database/bau063

Garcia, S., Panero, J.L., Siroky, J., and Kovarik, A., Repeated reunions and splits feature the highly dynamic evolution of 5S and 35S ribosomal RNA genes (rDNA) in the Asteraceae family, BMC Plant Biol., 2010, vol. 10, no. 1, p. 176. https://doi.org/10.1186/1471-2229-10-176

Garcia, S., Wendel, J.F., Borowska-Zuchowska, N., Aïnouche, M., Kuderova, A., and Kovarik, A., The utility of graph clustering of 5S ribosomal DNA homoeologs in plant allopolyploids, homoploid hybrids, and cryptic introgressants, Front. Plant Sci., 2020, vol. 11, p. 41. https://doi.org/10.3389/fpls.2020.00041

Gottlob-McHugh, S.G., Levesque, M., MacKenzie, K., Olson, M., Yarosh, O., and Johnson, D.A., Organization of the 5S rRNA genes in the soybean Glycine max (L.) Merrill and conservation of the 5S rDNA repeat structure in higher plants, Genome, 1990, vol. 33, no. 4, pp. 486–494. https://doi.org/10.1139/g90-072

Gruber, A.R., Lorenz, R., Bernhart, S.H., Neuböck, R., and Hofacker, I.L., The Vienna RNA Websuite, Nucleic Acids Res., 2008, vol. 36, pp. W70–W74. https://doi.org/10.1093/nar/gkn188

Hemleben, V., Grierson, D., Borisjuk, N., Volkov, R.A., and Kovarik, A., Personal perspectives on plant ribosomal RNA genes research: From precursor-rRNA to molecular evolution, Front. Plant Sci., 2021, vol. 12, p. 797348. https://doi.org/10.3389/fpls.2021.797348

Ishchenko, O.O., Panchuk, I.I., Andreev, I.O., Kunakh, V.A., and Volkov, R.A., Molecular organization of 5S ribosomal DNÀ of Deschampsia antarctica, Cytol. Genet., 2018, vol. 52, no. 6, pp. 416–421. https://doi.org/10.3103/S0095452718060105

Ishchenko, O.O., Mel’nyk, V.M., Parnikoza, I.Y., Budzhak, V.V., Panchuk, I.I., Kunakh, V.A., and Volkov, R.A., Molecular organization of 5S ribosomal DNA and taxonomic status of Avenella flexuosa (L.) Drejer (Poaceae), Cytol. Genet., 2020, vol. 54, pp. 505–513. https://doi.org/10.3103/S0095452720060055

Ishchenko, O.O., Bednarska, I.O., and Panchuk, I.I., Application of 5S ribosomal DNA for molecular taxonomy of subtribe Loliinae (Poaceae), Cytol. Genet., 2021, vol. 55, pp. 10–18. https://doi.org/10.3103/S0095452721010096

Joachimiak, A., Nalaskowska, M., Barciszewska, M., Barciszewski, J., and Mashkova, T., Higher plant 5S rRNAs share common secondary and tertiary structure. A new three domains model, Int. J. Biol. Macromol., 1990, vol. 12, no. 5, pp. 321–327. https://doi.org/10.1016/0141-8130(90)90022-3

Katoh, K., Rozewicki, J., and Yamada, K.D., MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization, Brief. Bioinf., 2019, vol. 20, pp. 1160–1166. https://doi.org/10.1093/bib/bbx108

Keller, I., Bensasson, D., and Nichols, R.A., Transition-transversion bias is not universal: a counter example from grasshopper pseudogenes, PLoS Genet., 2007, vol. 3, no. 2, p. e22. https://doi.org/10.1371/journal.pgen.0030022

Koutroumpa, K., Theodoridis, S., Warren, B.H., Jiménez, A., Celep, F., et al., An expanded molecular phylogeny of Plumbaginaceae, with emphasis on Limonium (sea lavenders): Taxonomic implications and biogeographic considerations, Ecol. Evol., 2018, vol. 8, no. 24, pp. 12397–12424. https://doi.org/10.1002/ece3.4553

Kumar, S., Stecher, G., Knyaz, C., and Tamura, K., MEGA X: molecular evolutionary genetics analysis across computing platforms, Mol. Biol. Evol., 2018, vol. 35, no. 635, pp. 1547–1549. https://doi.org/10.1093/molbev/msy096

Liu, G., Lan, Y., Qu, L., Zhao, Y., Xin, H., and Xi, M., Analyzing the genetic relationships in Tulipa based on karyotypes and 5S rDNA sequences, Sci. Hortic., 2022, vol. 302, p. 111178. https://doi.org/10.1016/j.scienta.2022.111178

Lledó, M.D., Crespo, M.B., Fay, M.F., and Chase, M.W., Molecular phylogenetics of Limonium and related genera (Plumbaginaceae): biogeographical and systematic implications, Am. J. Bot., 2005, vol. 92, no. 7, pp. 1189–1198. https://doi.org/10.3732/ajb.92.7.1189

Mahelka, V., Kopecký, D., and Baum, B.R., Contrasting patterns of evolution of 45S and 5S rDNA families uncover new aspects in the genome constitution of the agronomically important grass Thinopyrum intermedium (Triticeae), Mol. Biol. Evol., 2013, vol. 30, no. 9, pp. 2065–2086. https://doi.org/10.1093/molbev/mst106

Malekmohammadi, M., Akhani, H., and Borsch, T., Phylogenetic relationships of Limonium (Plumbaginaceae) inferred from multiple chloroplast and nuclear loci, Taxon, 2017, vol. 66, no. 5, pp. 1128–1146. https://doi.org/10.12705/665.8

Manske, C.L. and Chapman, D.J., Nonuniformity of nucleotide substitution rates in molecular evolution: computer simulation and analysis of 5S ribosomal RNA sequences, J. Mol. Evol., 1987, vol. 26, pp. 226–251. https://doi.org/10.1007/BF02099855

Mlinarec, J., Franjevic, D.D., Bočkor, L., and Besendorfer, V., Diverse evolutionary pathways shaped 5S rDNA of species of tribe Anemoneae (Ranunculaceae) and reveal phylogenetic signal, Bot. J. Linn. Soc., 2016, vol. 182, no. 1, pp. 80–99. https://doi.org/10.1111/boj.12452

Moysiyenko, I.I., A review of the family Limoniaceae Lincz. in Ukraine, Chornomors’k. Bot. Zh., 2008, vol. 4, no. 2, pp. 161–174.

Nei, M. and Rooney, A.P., Concerted and birth-and-death evolution of multigene families, Annu. Rev. Genet., 2005, vol. 39, pp. 121–152.

Nieto Feliner, G., Rosato, M., Alegre, G., San Segundo, P., Rosselló, J.A., Garnatje, T., and Garcia, S., Dissimilar molecular and morphological patterns in an introgressed peripheral population of a sand dune species (Armeria pungens, Plumbaginaceae), Plant Biol., 2019, vol. 21, no. 6, pp. 1072–1082. https://doi.org/10.1111/plb.13035

Okonechnikov, K., Golosova, O., and Fursov, M., Unipro UGENE: a unified bioinformatics toolkit, Bioinformatics, 2012, vol. 28, no. 8, pp. 1166–1167. https://doi.org/10.1093/bioinformatics/bts091

Pinhal, D., Yoshimura, T.S., Araki, C.S., and Martins, C., The 5S rDNA family evolves through concerted and birth-and-death evolution in fish genomes: an example from freshwater stingrays, BMC Evol. Biol., 2011, vol. 11, p. 157. https://doi.org/10.1186/1471-2148-11-151

Porebski, S., Bailey, L.G., and Baum, B.R., Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components, Plant Mol. Biol. Rep., 1997, vol. 15, no. 1, pp. 8–15. https://doi.org/10.1007/BF02772108

Rhazi, L., Rebelo, A.R., Róis, A.S., Castro, S., Loureiro, J., El Madihi, M., et al., Limonium mucronatum: plant communities and cytogenetic characterization of an endemic of the Moroccan Atlantic Coast, Plant Biosyst., 2021, vol. 155, no. 2, pp. 241–250. https://doi.org/10.1080/11263504.2020.1739158

Rooney, A.P. and Ward, T.J., Evolution of a large ribosomal RNA multigene family in filamentous fungi: birth and death of a concerted evolution paradigm, Proc. Natl. Acad. Sci. U. S. A., 2005, vol. 102, no. 14, pp. 5084–5089. https://doi.org/10.1073/pnas.0409689102

Saini, A. and Jawali, N., Molecular evolution of 5S rDNA region in Vigna subgenus Ceratotropis and its phylogenetic implications, Plant Syst. Evol., 2009, vol. 280, no. 3, pp. 187–206. https://doi.org/10.1007/s00606-009-0178-4

Sastri, D.C., Hilu, K., Appels, R., Lagudah, E.S., Playford, J., and Baum, B.R., An overview of evolution in plant 5S DNA, Plant Syst. Evol., 1992, vol. 183, pp. 169–181. https://doi.org/10.1007/BF00940801

Simmons, M.P. and Ochoterena, H., Gaps as characters in sequence-based phylogenetic analyses, Syst. Biol., 2000, vol. 49, no. 2, pp. 369–381. https://doi.org/10.1093/sysbio/49.2.369

Simon, L., Rabanal, F.A., Dubos, T., Oliver, C., Lauber, D., et al., Genetic and epigenetic variation in 5S ribosomal RNA genes reveals genome dynamics in Arabidopsis thaliana, Nucleic Acids Res., 2018, vol. 46, pp. 3019–3033. https://doi.org/10.1093/nar/gky163

Šmarda, P. and Bureš, P., The variation of base composition in plant genomes, in Plant Genome Diversity, vol. 1: Plant genomes, their residents, and their evolutionary dynamics, Vienna: Springer-Verlag, 2012, pp. 209–235. https://doi.org/10.1007/978-3-7091-1130-7_14

Sousa, A., Bechteler, J., Temsch, E.M., and Renner, S.S., Different from tracheophytes, liverworts commonly have mixed 35S and 5S arrays, Ann. Bot., 2020, vol. 125, no. 7, pp. 1057–1064. https://doi.org/10.1093/aob/mcaa027

Stepanenko, A., Chen, G., Hoang, P.T., Fuchs, J., Schubert, I., and Borisjuk, N., The ribosomal DNA loci of the ancient monocot Pistia stratiotes L. (Araceae) contain different variants of the 35S and 5S Ribosomal RNA gene units, Front. Plant Sci., 2022, vol. 13, p. 819750. https://doi.org/10.3389/fpls.2022.819750

Sun, F.J. and Caetano-Anollés, G., The evolutionary history of the structure of 5S ribosomal RNA, J. Mol. Evol., 2009, vol. 69, pp. 430−443. https://doi.org/10.1007/s00239-009-9264-z

Symonová, R., Integrative rDNAomics—Importance of the oldest repetitive fraction of the eukaryote genome, Genes, 2019, vol. 10, no. 5, p. 345. https://doi.org/10.3390/genes10050345

Takano-Shimizu, T., Local changes in GC/AT substitution biases and in crossover frequencies on Drosophila chromosomes, Mol. Biol. Evol., 2001, vol. 18, no. 4, pp. 606–619. https://doi.org/10.1093/oxfordjournals.molbev.a003841

Tynkevich, Y.O. and Volkov, R.A., Structural organization of 5S ribosomal DNA in Rosa rugose, Cytol. Genet., 2014, vol. 48, no. 1, pp. 1–6. https://doi.org/10.3103/S0095452714010095

Tynkevich, Y.O. and Volkov, R.A., 5S ribosomal DNA of distantly related Quercus species: molecular organization and taxonomic application, Cytol. Genet., 2019, vol. 53, no. 6, pp. 459–466. https://doi.org/10.3103/S0095452719060100

Tynkevich, Y.O., Novikov, A.V., Chorney, I.I., and Volkov, R.A., Organization of the 5S rDNA intergenic spacer and its use in the molecular taxonomy of the genus Aconitum L., Cytol. Genet., 2022a, vol. 56, no. 6, pp. 494–503. https://doi.org/10.3103/S0095452722060111

Tynkevich, Y.O., Shelyfist, A.Y., Kozub, L.V., Hemleben, V., Panchuk, I.I., and Volkov, R.A., 5S Ribosomal DNA of genus Solanum: molecular organization, evolution, and taxonomy, Front. Plant Sci., 2022b, vol. 13, p. 852406. https://doi.org/10.3389/fpls.2022.852406

Vierna, J., Wehner, S., Höner zu Siederdissen, C., Martinez-Lage, A., and Marz, M., Systematic analysis and evolution of 5S ribosomal DNA in metazoans, Heredity, 2013, vol. 111, no. 5, pp. 410–421. https://doi.org/10.1038/hdy.2013.63

Vogel, F. and Kopun, M., Higher frequencies of transitions among point mutations, J. Mol. Evol., 1977, vol. 9, pp. 159–180. https://doi.org/10.1007/BF01732746

Volkov, R.A., Panchuk, I.I., Borisjuk, N.V., Hosiawa-Baranska, M., Maluszynska, J., and Hemleben, V., Evolutional dynamics of 45S and 5S ribosomal DNA in ancient allohexaploid Atropa belladonna, BMC Plant Biol., 2017, vol. 17, p. 21. https://doi.org/10.1186/s12870-017-0978-6

Vozárová, R., Herklotz, V., Kovařík, A., Tynkevich, Y.O., Volkov, R.A., et al., Ancient origin of two 5S rDNA families dominating in the genus Rosa and their behavior in the canina-type meiosis, Front. Plant Sci., 2021, vol. 12, p. 643548. https://doi.org/10.3389/fpls.2021.643548

W.F.O. World Flora Online, 2023. http://www.worldfloraonline.org/.

Wang, W., Zhang, X., Garcia, S., Leitch, A.R., and Kovařík, A., Intragenomic rDNA variation - the product of concerted evolution, mutation, or something in between?, Heredity, 2023, vol. 131, pp. 179–188. https://doi.org/10.1038/s41437-023-00634-5

Yuan, F., Wang, X., Zhao, B., Xu, X., Shi, M., et al., The genome of the recretohalophyte Limonium bicolor provides insights into salt gland development and salinity adaptation during terrestrial evolution, Mol. Plant, 2022, vol. 15, no. 6, pp. 1024–1044. https://doi.org/10.1016/j.molp.2022.04.011