РЕЗЮМЕ. Рак легень – це один з найпоширеніших видів раку, який призводить до летальності. У цьому дослідженні вивчали вплив цисплатину, таурину та комбінації цих двох сполук на клітинну лінію A549. Клітини A549 обробляли різними концентраціями таурину, цисплатину та комбінації обох сполук. Було проведено MTT-тест, вивчення апоптозу та клітинного циклу методом проточної цитометрії. Експресію генів вивчали за допомогою ПЛР у реальному часі. Цисплатин і таурин знижували життєздатність клітинної лінії A549, але кращим цей ефект був за використання комбінації таурину та цисплатину. Кількість клітин, які перебували на стадії G0/G1, збільшилась у всіх досліджуваних групах; це пригнічення було особливо помітним у групі з використанням комбінації сполук. Підвищилась експресія таких генів, як P53, Bax, каспаза 3, каспаза 9 та P14. Наші дослідження також показали, що комбінація цисплатину і таурину була помірно синергетичною, а значення Cl були в діапазоні від X до Y для Fa 0,5. Комбінація цисплатину і таурину може бути ефективною в терапії раку й застосовним варіантом для зменшення проблем зі стійкістю до медичних препаратів та інших побічних ефектів високої дози цисплатину, але потрібно провести додаткові дослідження у цій сфері.
Ключові слова: рак, клітинна лінія, цисплатин, таурин, стійкість до медичних препаратів
Повний текст та додаткові матеріали
Цитована література
Arnesano, F., Losacco, M., and Natile, G., An updated view of cisplatin transport, Eur. J. Inorg. Chem., 2013, no. 15, pp. 2701–2711.
Basu, A. and Krishnamurthy, S., Cellular responses to cisplatin-induced DNA damage, J. Nucleic Acids, 2010, vol. 2010, p. 201367.
Beretta, G.L., Gatti, L., Tinelli, S., Corna, E., Colangelo, D., Zunino, F., et al., Cellular pharmacology of cisplatin in relation to the expression of human copper transporter CTR1 in different pairs of cisplatin-sensitive and -resistant cells, Biochem. Pharmacol., 2004, vol. 68, no. 2, pp. 283–291.
Chen, D., Milacic, V., Frezza, M., and Dou, Q.P., Metal complexes, their cellular targets and potential for cancer therapy, Curr. Pharm. Design, 2009, vol. 15, no. 7, pp. 777–791.
Chowdhury, S., Sinha, K., Banerjee, S., and Sil, P.C., Taurine protects cisplatin induced cardiotoxicity by modulating inflammatory and endoplasmic reticulum stress responses, Biofactors, 2016, vol. 42, no. 6, pp. 647–664.
El Agouza, I., Eissa, S., El Houseini, M., El-Nashar, D.E., and El Hameed, O.A., Taurine: a novel tumor marker for enhanced detection of breast cancer among female patients, Angiogenesis, 2011, vol. 14, no. 3, p. 321.
Florea, A.-M. and Büsselberg, D., Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects, Cancers, 2011, vol. 3, no. 1, pp. 1351–1371.
Galluzzi, L., Senovilla, L., Vitale, I., Michels, J., Martins, I., Kepp, O., et al., Molecular mechanisms of cisplatin resistance, Oncogene, 2012, vol. 31, no. 15, p. 1869.
Holzer, A.K., Katano, K., Klomp, L.W., and Howell, S.B., Cisplatin rapidly down-regulates its own influx transporter hCTR1 in cultured human ovarian carcinoma cells, Clin. Cancer Res., 2004, vol. 10, no. 19, pp. 6744–6749.
Jalali, A., Zafari, J., Jouni, F.J., Abdolmaleki, P., Shirazi, F.H., and Khodayar, M.J., Combination of static magnetic field and cisplatin in order to reduce drug resistance in cancer cell lines, Int. J. Radiat. Biol., 2019, vol. 1–8.
Kim, T. and Kim, A.K., Taurine enhances anticancer activity of cisplatin in human cervical cancer cells, in Taurine 8, Springer-Verlag, 2013, pp. 189–198.
Kim, C.W., Lu, J.N., Go, S.-I., Jung, J.H., Yi, S.M., Jeong, J.-H., et al., p53 restoration can overcome cisplatin resistance through inhibition of Akt as well as induction of Bax, Int. J. Oncol., 2013, vol. 43, no. 5, p. 1495–1502.
Miller, K.D., Siegel, R.L., Lin, C.C., Mariotto, A.B., Kramer, J.L., Rowland, J.H., et al., Cancer treatment and survivorship statistics, Ca-Cancer J. Clin., 2016, vol. 66, no. 4, pp. 271–289.
Nematbakhsh, M., Ashrafi, F., Pezeshki, Z., Fatahi, Z., Kianpoor, F., Sanei, M.-H., et al., A histopathological study of nephrotoxicity, hepatoxicity or testicular toxicity: Which one is the first observation as side effect of Cisplatin-induced toxicity in animal model?, J. Nephropathol., 2012, vol. 1, no. 3, p. 190.
Saad, S.Y. and Al-Rikabi, A.C., Protection effects of taurine supplementation against cisplatin-induced nephrotoxicity in rats, Chemotherapy, 2002, vol. 48, no. 1, pp. 42–48.
Safaei, R. and Howell, S.B., Copper transporters regulate the cellular pharmacology and sensitivity to Pt drugs, Crit. Rev. Oncol./Hematol., 2005, vol. 53, no. 1, pp. 13–23.
Sato, S., Yamate, J., Saito, T., Hosokawa, T., Saito, S., and Kurasaki, M., Protective effect of taurine against renal interstitial fibrosis of rats induced by cisplatin, Naunyn-Schmiedeberg’s Arch. Pharmacol., 2002, vol. 365, no. 4, pp. 277–283.
Siegel, R., DeSantis, C., Virgo, K., Stein, K., Mariotto, A., Smith, T., et al., Cancer treatment and survivorship statistics, 2012, Ca-Cancer J. Clin., 2016, vol. 62, no. 4, pp. 220–241.
Siegel, R.L., Miller, K.D., and Jemal, A., Cancer statistics, Ca-Cancer J. Clin., vol. 66, no. 1, pp. 7–30.
Smith, R.A., Andrews, K.S., Brooks, D., Fedewa, S.A., Manassaram-Baptiste, D., Saslow, D., et al., Cancer screening in the United States, 2018: A review of current American Cancer Society guidelines and current issues in cancer screening, Ca-Cancer J. Clin., 2018, vol. 68, no. 4, pp. 297–316.
Tsai, C.-Y., Larson, C.A., Safaei, R., and Howell, S.B., Molecular modulation of the copper and cisplatin transport function of CTR1 and its interaction with IRS-4, Biochem. Pharmacol., vol. 90, no. 4, pp. 379–387.
Tu, S., Zhang, X.L., Wan, H.F., Xia, Y.Q., Liu, Z.Q., Yang, X.H., et al., Effect of taurine on cell proliferation and apoptosis human lung cancer A549 cells, Oncol. Lett., 2018, vol. 15, no. 4, pp. 5473–5480.
Vanitha, M., Baskaran, K., Periyasamy, K., Saravanan, D., Ilakkia, A., Selvaraj, S., et al., A review on the biomedical importance of taurine, Int. J. Pharm. Res. Health Sci., 2015, vol. 3, no. 3, pp. 680–686.
Vasan, N., Baselga, J., and Hyman, D.M., A view on drug resistance in cancer, Nature, 2019, vol. 575, no. 7782, pp. 299–309.
Zafari, J., Vazini, H., Javani-jouni, F., Abdolmaleki, P., Monajemi, R., Shams, E., et al., Anticancer effects of moderate static magnetic field on cancer cells in vitro, Res. Mol. Med., 2018, vol. 6, no. 3, pp. 54–64.
Zhang, X., Tu, S., Wang, Y., Xu, B., and Wan, F., Mechanism of taurine-induced apoptosis in human colon cancer cells, Acta Biochim. Biophys. Sin., 2014, vol. 46, no. 4, pp. 261–272.
Zhang, X., Lu, H., Wang, Y., Liu, C., Zhu, W., Zheng, S., et al., Taurine induces the apoptosis of breast cancer cells by regulating apoptosis-related proteins of mitochondria, Int. J. Mol. Med., 2015, vol. 35, no. 1, pp. 218–226.