Цитологія і генетика 2023, том 57, № 4, 51-55
Cytology and Genetics 2023, том 57, № 4, 374–383, doi: https://www.doi.org/https://doi.org/10.3103/S0095452723040114

Genetic basis of pest resistance in wheat­rye and triticale stocks

Spetsov P., Daskalova N.

  1. Aksakovo Center, Aksakovo, Varna region, 9154 Bulgaria
  2. Plant Production Department, Technical University, Varna, 9010 Bulgaria

РЕЗЮМЕ. У цьому огляді описано вісім генів та 21 локус стійкості до шкідників, локалізованих у хромосомах генетичних фондів гібридів жита й пшениці та тритикале. Представлено детальну інформацію щодо донора хромосоми жита, типу вставленого t­хроматину, молекулярного маркера (за його наявності) та отриманих ліній пшениці та/або тритикале для впровадження стійкості при розведенні. Визначено основні фактори стійкості до комах у хромосомі 1R, а потім в 6R, у формі хромосомних транслокацій або замін у гібридах пшениці й жита. Більшість генів забезпечує стійкість до російської пшеничної попелиці та гессенської мухи. Зареєстровані генетичні фонди можуть ефективно слугувати важливими засобами для вдосконалення пшениці та тритикале. Представлені дані допоможуть дослідникам компетентно використовувати стійкість хроматину жита в класичній та маркерній селекції.

Ключові слова: стійкість до шкідників, хромосоми жита, гібриди пшениці й жита, генетичні фонди тритикале

Цитологія і генетика
2023, том 57, № 4, 51-55

Current Issue
Cytology and Genetics
2023, том 57, № 4, 374–383,
doi: https://doi.org/10.3103/S0095452723040114

Повний текст та додаткові матеріали

Цитована література

Aguirre-Rojas, L.M., Khalaf, L.K., Garcés-Carrera, S., Sinha, D.K., Chuang, W.-P., and Smith, C.M., Resistance to wheat curl mite in arthropod-resistant rye-wheat translocation lines, Agronomy, 2017, vol. 4, p. 74. https://doi.org/10.3390/agronomy7040074

Anderson, G.R., Papa, D., Peng, J., Tahir, M., and Lapitan, N.L.V., Genetic mapping of Dn7, a rye gene conferring resistance to the Russian wheat aphid in wheat, Theor. Appl. Genet., 2003, vol. 107, pp. 1297–1303. https://doi.org/10.1007/s00122-003-1358-1

Andersson, S.C., Johansson, E., Baum, M., Rihawi, F., and El Bouhssini, M., New resistance sources to Russian wheat aphid (Diuraphis noxia) in Swedish wheat substitution and translocation lines with rye (Secale cereale) and Leymus mollis, Czech J. Genet. Plant Breed., 2015, vol. 51, pp. 162–165. https://doi.org/10.17221/72/2015-CJGPB

Asiedu, R., Fisher, J.M., and Driscoll, C.J., Resistance to Heterodera avenae in the rye genome of triticale, Theor. Appl. Genet., 1990, vol. 79, pp. 331–336. https://doi.org/10.1007/BF01186075

Bakala, H.S., Mandahal, K.S., Ankita Sarao, L.K., and Srivastava, P.P., Breeding wheat for biotic stress resistance: achievements, challenges and prospects, in Current Trends in Wheat Research, Ansari, M.R., Ed., IntechOpen, 2022, pp. 1–30. https://doi.org/10.5772/intechopen.97359

Book

Berzonsky, W.A., Ding, H., Haley, S.D., Harris, M.O., Lamb, R.J., McKenzie, R.I.H., Ohm, H.W., Patterson, F.L., Peairs, F.B., Porter, D.R., Ratcliffe, R.H., and Shanower, T.G., Breeding wheat for resistance to insects, Plant Breed Rev., 2003, vol. 22, pp. 221–296.

Cárcamo, H.A., Beres, B.L., Clarke, F., Byers, R.J., Mündel, H.H., May, K., and Depauw, R., Influence of plant host quality on fitness and sex ratio of the wheat stem sawfly (Hymenoptera: Cephidae), Environ. Entomol., 2005, vol. 34, pp. 1579–1592. https://doi.org/10.1603/0046-225X-34.6.1579

Cárcamo, H., Beres, B., Wu, X., Larson, T., and Schwinghamer, T., Effect of plant density on wheat stem sawfly sex ratio, Front. Agron., 2020, vol. 4, pp. 1–10. https://doi.org/10.3389/fagro.2020.00004

Cox, T.S., Bockus, W.W., Gill, B.S., Sears, R.G., Harvey, T.L., Leath, S., and Brown-Guedira, G.L., Registration of KS96WGRC40 hard red winter wheat germplasm resistant to wheat curl mite, Stagonospora leaf blotch and Septoria leaf blotch, Crop Sci., 1999, vol. 39, p. 597.

Crespo-Herrera, L.A., Smith, C.M., Singh, R.P., and Åhman, I., Resistance to multiple cereal aphids in wheat–alien substitution and translocation lines, Arthropod-Plant Interact., 2013, vol. 7, pp. 535–545. https://doi.org/10.1007/s11829-013-9267-y

Crespo-Herrera, L.A., Akhunov, E., Garkava-Gustavs-son, L., Jordan, K.W., Smith, C.M., Singh, R.P., and Åhman, I., Mapping resistance to the bird cherry-oat aphid and the greenbug in wheat using sequence-based genotyping, Theor. Appl. Genet., 2014, vol. 127, pp. 1963–1973. https://doi.org/10.1007/s00122-014-2352-5

Crespo-Herrera, L.A., Singh, R.P., and Åhman, I., Field population development of bird cherry-oat aphid and greenbug (Hemiptera: Aphididae) on wheat-alien substitution and translocation lines, Euphytica, 2015, vol. 203, pp. 249–260. https://doi.org/10.1007/s10681-014-1244-8

Crespo-Herrera, L.A., Garkava-Gustavsson, L., and Åhman, I., A systematic review of rye (Secale cereale L.) as a source of resistance to pathogens and pests in wheat (Triticum aestivum L.), Hereditas, 2017, vol. 154, p. 14. https://doi.org/10.1186/s41065-017-0033-5

Crespo-Herrera, L.A., Singh, R.P., Sabraoui, A., and El-Bouhssini, M., Resistance to insect pests in wheat-rye and Aegilops speltoides Tausch translocation and substitution lines, Euphytica, 2019, vol. 215, p. 123. https://doi.org/10.1007/s10681-019-2449-7

Cui, L., Gao, X., Wang, X., Jian, H., Tang, W.-H., Li, H.-L., and Li, H.-J., Characterization of interaction between wheat roots with different resistance and Heterodera filipjevi, Acta Agron. Sin., 2012, vol. 38, pp. 1009–1017. http://www.cnki.net/kcms/detai-l/11.1809.S.20120329.1115.001.html.

Daskalova, N. and Spetsov, P., Taxonomic relationships and genetic variability of wild Secale L. species as a source for valued traits in rye, wheat and triticale breeding, Cytol. Genet., 2020, vol. 54, pp. 71–81. https://doi.org/10.3103/S0095452720010041

Dundas, I.S., Frappell, D.E., Crack, D.M., and Fisher, J.M., Deletion mapping of a nematode resistance gene on rye chromosome 6R in wheat, Crop Sci., 2001, vol. 41, pp. 1771–1778.

El Bouhssini, M., Ogbonnaya, F.C., Chen, M., et al., Sources of resistance in primary synthetic hexaploid wheat (Triticum aestivum L.) to insect pests: Hessian fly, Russian wheat aphid and Sunn pest in the Fertile Crescent, Genet. Resour. Crop Evol., 2013, vol. 60, pp. 621–627. https://doi.org/10.1007/s10722-012-9861-3

Ferrahi, M., Friebe, B., Hatchett, J.H., Brown-Guedira, G.L., and Gill, B.S., Two step transfer of rye-derived Hessian fly H21 to durum wheat by compensating Robertsonian translocation and induced homoeologous recombination, Int. J. Adv. Res., 2017, vol. 5, pp. 262–270. https://doi.org/10.21474/IJAR01/5529

Fisher, J.M., Towards a consistent laboratory assay for resistance to Heterodera avenae, EPPO Bull., 1982, vol. 12, pp. 445–449.

Friebe, B., Hatchett, J.H., Sears, R.G., and Gill, B.S., Transfer of Hessian fly resistance from ‘Chaupon’ rye to hexaploid wheat via a 2BS/2RL wheat-rye chromosome translocation, Theor. Appl. Genet., 1990, vol. 79, pp. 385–389.

Friebe, B., Jiang, J., Raupp, W.J., McIntosh, R.A., and Gill, B.S., Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status, Euphytica, 1996, vol. 91, pp. 59–87. https://doi.org/10.1007/BF00035277

Friebe, B., Kynast, R.G., Hatchett, J.H., Sears, R.G., Wilson, D.L., and Gill, B.S., Transfer of wheat-rye translocation chromosomes conferring resistance to Hessian fly from bread wheat into durum wheat, Crop Sci., 1999, vol. 39, pp. 1692–1696. https://doi.org/10.2135/cropsci1999.3961692x

Fritz, A.K., Caldwell, S., and Worrall, W.D., Molecular mapping of Russian wheat aphid resistance from triticale accession PI 386156, Crop Sci., 1999, vol. 39, pp. 1707–1710. https://doi.org/10.2135/cropsci1999.3961707x

Geiger, H.H. and Miedaner, T., Rye breeding, in Cereals, in Handbook of Plant Breeding, Carena, M.J., Ed., New York: Springer US, 2009, vol. 3, pp. 157–181. https://doi.org/10.1007/978-0-387-72297-9

Book

Haley, S.D., Peairs, F.B., Walker, C.B., et al., Occurrence of a new Russian wheat aphid biotype in Colorado, Crop Sci., 2004, vol. 44, pp. 1589–1592. https://doi.org/10.2135/cropsci2004.1589

Harvey, T.L., Seifers, D.L., Martin, T.J., Brown-Guedira, G.L., and Gill, B.S., Survival of wheat curl mites on different sources of resistance in wheat, Crop Sci., 1999, vol. 39, pp. 1887–1889. https://doi.org/10.2135/cropsci1999.3961887x

Hatchett, J.H., Sears, R.G., and Cox, T.S., Inheritance of resistance to Hessian fly in rye and in wheat-rye translocation lines, Crop Sci., 1993, vol. 33, pp. 730–734. https://doi.org/10.2135/cropsci1993.0011183X003300040019x

Hesler, L.S., Resistance to Rhopalosiphum padi (Homoptera: Aphididae) in three triticale accessions, J. Econ. Entomol., 2005, vol. 98, pp. 603–610.

Hesler, L.S., Haley, S.D., Nkongolo, K.K., and Peairs, F.B., Resistance to Rhopalosiphum padi (Homoptera: Aphididae) in triticale and triticale-derived wheat lines resistant to Diuraphis noxia (Homoptera: Aphididae), J. Entomol. Sci., 2007, vol. 42, pp. 217–227. https://doi.org/10.18474/0749-8004-42.2.217

Hu, X.S., Liu, Y.J., Wang, Y.-H., Wang, Z., Yu, X., Wang, B., Zhang, G.-S., Liu, X.-F., Hu, Z.-Q., Zhao, H.-Y., and Liu, T.-X., Resistance of wheat accessions to the English grain aphid Sitobion avenae, PLoS One, 2016, vol. 11, p. e0156158. https://doi.org/10.1371/journal.pone.0156158

Johansson, E., Henriksson, T., Prieto-Linde, M.L., Andersson, S., Ashraf, R., and Rahmatov, M., Diverse wheat-alien introgression lines as a basis for durable resistance and quality characteristics in bread wheat, Front. Plant Sci., 2020, vol. 11, p. 1067. https://doi.org/10.3389/fpls.2020.01067

Karelov, A.V., Pylypenko, L.A., Kozub, N.A., Sozinov, I.A., and Blume, Ya.B., Genetic background of the resistance against parasitic nematodes in wheat, Cytol. Genet., 2019, vol. 53, pp. 315–320. https://doi.org/10.3103/S0095452719040066

Khalaf, L., Chuang, W.-P., Aguirre-Rojas, L.M., Klein, P.P., and Smith, C.M., Differences in Aceria tosichella population responses to wheat resistance genes and wheat virus transmission, Arthropod-Plant Interact., 2019. vol. 13. pp. 807–818. https://doi.org/10.1007/s11829-019-09717-9

Kim, W., Johnson, J.W., Baenziger, P.S., and Gaines, C.S., Agronomic effect of wheat-rye translocation carrying rye chromatin (1R) from different sources, Crop Sci., 2004, vol. 44, pp. 1254–1258. https://doi.org/10.2135/cropsci2004.1254

Koch, K.G., Chapman, K., Louis, J., Heng-Moss, T., and Sarath, G., Plant tolerance: a unique approach to control Hemipteran pests, Front. Plant Sci., 2016, vol. 7, p. 1363. https://doi.org/10.3389/fpls.2016.01363

Kumlay, A.M., Baenziger, P.S., Gill, K.S., Shelton, D.R., Graybosch, R.A., Lukaszewski, A.J., and Wesenberg, D.M., Understanding the effect of rye chromatin in bread wheat, Crop Sci., 2003, vol. 43, pp. 1643–1651.

Lapitan, N.L.V., Peng, J., and Sharma, V., A high-density map and PCR markers for Russian wheat aphid resistance gene Dn7 on chromosome 1RS/1BL, Crop Sci., 2007, vol. 47, pp. 811–820. https://doi.org/10.2135/cropsci2006.08.0529

Li, G., Wang, Y., Chen, M.S., et al., Precisely mapping a major gene conferring resistance to hessian fly in bread wheat using genotyping-by-sequencing, BMC Genomics, 2015, vol. 16, p. 108. https://doi.org/10.1186/s12864-0151297-7

Liu, X.M., Brown-Guedira, G.L., Hatchett, J.H., Owuoche, J.O., and Chen, M.S., Genetic characterization and molecular mapping of a Hessian fly-resistance gene transferred from T. turgidum ssp. dicoccum to common wheat, Theor. Appl. Genet., 2005, vol. 111, pp. 1308–1315. https://doi.org/10.1007/s00122-005-0059-3

Liu, S., Rudd, J.C., Bai, G., Haley, S.D., Ibra-him, A.M.H., Xue, Q., Hays, D.B., Graybosch, R.A., Devkota, R.N., and Amand, P.St., Molecular markers linked to important genes in hard winter wheat, Crop Sci., 2014, vol. 54, pp. 1304–1321. https://doi.org/10.2135/cropsci2013.08.0564

Liu, X.L., Lu, B.Y., Wang, C.Y., Wang, Y.J., Zhang, H., Tian, Z.R., and Ji, W.Q., Identification of Sitobion avenae F. resistance and genetic diversity of wheat landraces from Qinling Mountains, China, Cereal Res. Commun., 2018, vol. 46, pp. 104–113. https://doi.org/10.1556/0806.45.2017.071

Lu, H., Rudd, J.C., Burd, J.D., and Weng, Y., Molecular mapping of greenbug resistance genes Gb2 and Gb6 in T1AL.1RS wheat-rye translocations, Plant Breed., 2010, vol. 129, pp. 472–476. https://doi.org/10.1111/j.1439-0523.2009.01722.x

Lukaszewski, A.J., Further manipulation by centric misdivision of the 1RS.1BL translocation in wheat, Euphytica, 1997, vol. 94, pp. 257–261. https://doi.org/10.1023/A:1002916323085

Lukaszewski, A.J., Manipulation of the 1RS.1BL translocation in wheat by induced homoeologous recombination, Crop Sci., 2000, vol. 40, pp. 216–225.

Lukaszewski, A.J., Cytogenetically engineered rye chromosomes 1R to improve bread-making quality of hexaploid triticale, Crop Sci., 2006, vol. 46, pp. 2183–2194. https://doi.org/10.2135/cropsci2006.03.0135

Lukaszewski, A.J., Introgressions between wheat and rye, in Alien Introgression in Wheat, Cytogenetics, Molecular Biology, Genomics, Molnár-Láng, M., Ceoloni, C., and Doležel, J., Eds., Cham: Springer-Verlag, 2015, pp. 163–189. https://doi.org/10.1007/978-3-319-23494-6_7

Book

Lukaszewski, A.J., Porter, D.R., Baker, C.A., Rybka, K., and Lapinski, B., Attempts to transfer Russian wheat aphid resistance from a rye chromosome in Russian triticales to wheat, Crop Sci., 2001, vol. 41, pp. 1743–1749. https://doi.org/10.2135/cropsci2001.1743

Malik, R., Brown-Guedira, G.L., Smith, C.M., Harvey, T.L., and Gill, B.S., Genetic mapping of wheat curl mite resistance genes Cmc3 and Cmc4 in common wheat, Crop Sci., 2003, vol. 43, pp. 644–650.

Marais, G.F., Horn, M., and Du Toit, F., Intergeneric transfer (rye to wheat) of gene(s) for Russian wheat aphid resistance, Plant Breed., 1994, vol. 113, pp. 265–271. https://doi.org/10.1111/j.1439-0523.1994.tb00735.x

Mondal, S., Rutkoski, J.E., Velu, G., et al., Harnessing diversity in wheat to enhance grain yield, climate resilience, disease and insect pest resistance and nutrition through conventional and modern breeding approaches, Front. Plant Sci., 2016, vol. 7, p. 991. https://doi.org/10. 3389/fpls.2016.00991

Mookiah, S., Sivasubramaniam, B., Thangaraj, T., and Govindaraj, S., Host plant resistance, in Molecular Approaches for Sustainable Insect Pest Management, Omkar, Ed., Singapore: Springer, 2021, pp. 1–56. https://doi.org/10.1007/978-981-16-3591-5

Moskal, K., Kowalik, S., Podyma, W., Łapiński, B., and Boczkowska, M., The pros and cons of rye chromatin introgression into wheat genome, Agronomy, 2021, vol. 11, no. 3, p. 456. https://doi.org/10.3390/agronomy11030456

Newell, M.A. and Butler, T.J., Forage rye improvement in the Southern United States: A review, Crop Sci., 2013, vol. 53, pp. 38–47. https://doi.org/10.2135/cropsci2012.05.0319

Nkongolo, K.K., Lapitan, N.L.V., and Quick, J.S., Genetic and cytogenetic analyses of Russian wheat aphid resistance in triticale × wheat hybrids and progenies, Crop Sci., 1996, vol. 36, pp. 1114–1119. https://doi.org/10.2135/cropsc-i1996.0011183X003600050007x

Nkongolo, K.K., Haley, S.D., Kim, N.S., Michael, P., Fedak, G., Quick, J.S., and Peairs, F.B., Molecular cytogenetic and agronomic characterization of advanced generations of wheat x triticale hybrids resistant to Diuraphis noxia (Mordvilko): application of GISH and microsatellite markers, Genome, 2009, vol. 52, pp. 353–360. https://doi.org/10.1139/G09-010

Nkongolo, K.K., Scott, D., Haley, S.D., Quick, J.S., and Peairs, F.B., Registration of six wheat-rye addition lines resistant to the Russian wheat aphid, J. Plant Regist., 2011, vol. 5, pp. 426–429. https://doi.org/10.3198/jpr2010.11.0637crgs

Özberk, I., Atlı, A., Yücel, A., Özberk, F., and Coşkun, Y., Wheat stem sawfly (Cephus pygmaeus L.) damage; impacts on grain yield, quality and marketing prices in Anatolia, Crop Prot., 2005, vol. 24, pp. 1054–1060. https://doi.org/10.1016/j.cropro.2005.03.006

Peng, J., Wang, H., Haley, S., Peairs, F.B., and Lapitan, N.L.V., Molecular mapping of the Russian wheat aphid resistance gene Dn2414 in wheat, Crop Sci., 2007, vol. 47, pp. 2418–2429. https://doi.org/10.2135/cropsci2007.03.0137

Puterka, G.J., Xu, X., Li, G., Carver, B.F., and Guo, P.P., Mechanisms of resistance of new wheat gene Dn10 in comparison with other Dn genes resistant to Russian wheat aphid, Crop Sci., 2020, vol. 60, pp. 1782–1788. https://doi.org/10.1002/csc2.20051

Qiao, F., Kong, L.-A., Peng, H., Huang, W.-K., Wu, D.-K., Liu, S.-M., Clarke, J.L., Qiu, D.-W., and Peng, D.-L., Transcriptional profiling of wheat (Triticum aestivum L.) during a compatible interaction with the cereal cyst nematode Heterodera avenae, Sci. Rep., 2019, vol. 9, p. 2184. https://doi.org/10.1038/s41598-018-37824-9

Rabinovich, S.V., Importance of wheat-rye translocations for breeding modern cultivars of Triticum aestivum L., Euphytica, 1998, vol. 100, pp. 323–340. https://doi.org/10.1023/A:1018361819215

Rakoczy-Trojanowska, M., Bolibok-Brągoszewska, H., Myśków, B., Dzięgielewska, M., Stojałowski, S., Grądzielewska, A., Boczkowska, M., and Moskal, K., Genetics and genomics of stress tolerance, in The Rye Genome. Compendium of Plant Genomes, Rabanus-Wallace, M.T. and Stein, N., Eds., Springer Cham, 2021, pp. 213–236. https://doi.org/10.1007/978-3-030-83383-1_11

Book

Riedell, W.E., Kieckhefer, R.W., Langham, M.A.C., and Hesler, L.S., Root and shoot responses to bird cherry-oat aphids and Barley yellow dwarf virus in spring wheat, Crop Sci., 2003, vol. 43, pp. 1380–1386.

Royer, T.A., Pendleton, B.B., Elliott, N.C., and Giles, K.L., Greenbug (Hemiptera: Aphididae) Biology, ecology, and management in wheat and sorghum, J. Integr. Pest Manage., 2015, vol. 6, p. 19. https://doi.org/10.1093/jipm/pmv018

Sandhu, S. and Kang, M., Advances in breeding for resistance to insects. in Breeding Insect Resistant Crops for Sustainable Agriculture, Arora, R. and Sandhu, S., Eds., Singapore: Springer-Verlag, 2017, pp. 67–99. https://doi.org/10.1007/978-981-10-6056-4_3

Book

Schlegel, R., Melz, G., and Mettin, D., Rye cytology, cytogenetics and genetics—current status, Theor. Appl. Genet., 1986, vol. 72, pp. 721–734. https://doi.org/10.1007/BF00266535

Sebesta, E.E., Wood, E.A., Porter, D.R., Webster, J.A., and Smith, E.L., Registration of Gaucho greenbug-resistant triticale germplasm, Crop Sci., 1994, vol. 34, p. 1428. https://doi.org/10.2135/cropsci1994.0011183X003400050081x

Sebesta, E.E., Wood, E.A., Porter, D.R., Webster, J.A., and Smith, E.L., Registration of Amigo wheat germplasm resistant to greenbug, Crop Sci., 1995, vol. 35, p. 293. https://doi.org/10.2135/cropsci1995.0011183X003500010074x

Singh, B., Simon, A., Halsey, K., Kurup, S., Clark, S., and Aradottir, G.I., Characterisation of bird cherry-oat aphid (Rhopalosiphum padi L.) behaviour and aphid host preference in relation to partially resistant and susceptible wheat landraces, Ann. Appl. Biol., 2020, vol. 177, pp. 184–194. https://doi.org/10.1111/aab.12616

Singh, B., Jasrotia, P., and Crespo-Herrera, L., Breeding for aphid resistance in wheat: status and future prospects, in New Horizons in Wheat and Barley Research. Crop Protection and Resource Management, Kashyap, P.L., Gupta, V., Gupta, O.P., Sendhil, R., Gopalareddy, K., Jasrotia, P.P., and Singh, G.P., Eds., Singapore: Springer-Verlag, 2022, pp. 381–399. https://doi.org/10.1007/978-981-16-4134-3

Book

Spetsov, P. and Daskalova, N., Resistance to pathogens in wheat-rye and triticale genetic stocks, J. Plant Pathol., 2022, vol. 104, pp. 99–114. https://doi.org/10.1007/s42161-021-01019-5

Taylor, C., Shepherd, K.W., and Langridge, P.P., A molecular genetic map of the long arm of chromosome 6R of rye incorporating the cereal cyst nematode resistance gene, CreR, Theor. Appl. Genet., 1998, vol. 97, pp. 1000–1012. https://doi.org/10.1007/s001220050984

Tyrka, M. and Chełkowski, J., Enhancing the resistance of triticale by using genes from wheat and rye, J. Appl. Genet., 2004, vol. 45, pp. 283–295.

Varella, A.C., Weaver, D.K., Sherman, J.D., Black, N.K., et al., Association analysis of stem solidness and wheat stem sawfly resistance in a panel of North American spring wheat germplasm, Crop Sci., 2015, vol. 55, pp. 2046–2055. https://doi.org/10.2135/cropsci2014.12.0852

Wang, D., Liu, D., Shi, X., Yang, Y., Zhang, N, and Shang, Z., Transcriptome profiling revealed potentially important roles of defensive gene expression in the divergence of insect biotypes: a case study with the cereal aphid Sitobion avenae, BMC Genomics, 2020, vol. 21, p. 546. https://doi.org/10.1186/s12864-020-06950-y

Ward, S., van Helden, M., Heddle, T., Ridland, P.M., Pirtle, E., and Umina, P.A., Biology, ecology and management of Diuraphis noxia (Hemiptera: Aphididae) in Australia, Aust. Entomol., 2020, vol. 59, pp. 238–252. https://doi.org/10.1111/aen.12453

Webster, J.A., Resistance in triticale to the Russian wheat aphid (Homoptera: Aphididae), J. Econ. Entomol., 1990, vol. 83, pp. 1091–1095. https://doi.org/10.1093/jee/83.3.1091