Цитологія і генетика 2023, том 57, № 3, 28-39
Cytology and Genetics 2023, том 57, № 3, 229–238, doi: https://www.doi.org/10.3103/S0095452723030040

«Зелений» синтез квантових точок CdTe та їх вплив на клітини тварин і людини

Гарманчук Л., Борова М., Капуш О., Джаган В., Валах М., Блюм Я., Ємець А.

  1. ННЦ «Інститут біології та медицини» Київського національного університету ім. Т. Шевченка, просп. Академіка Глушкова, 2, Київ, 03022, Україна
  2. Інститут фізики напівпровідників ім. В.Є. Лашкарьова НАН України, просп. Науки, 41, Київ, 03028, Україна
  3. Інститут харчової біотехнології та геноміки НАН України, вул. Байди­Вишневецького, 2а, Київ, 04123, Україна

Оскільки нанорозмірність у поєднанні з люмінесцентними властивостями та перспективними застосуваннями в різних галузях оптоелектроніки та біомедицини зумовлює зростаючий інтерес до вивчення особливостей квантових точок телуриду кадмію, нами було розроблено метод «зеленого» синтезу квантових точок CdTe з використанням культури міцелію Pleurotus ostreatus як біологічної матриці. При дослідженні їх фізико-хімічних характеристик було встановлено, що синтезовані квантові точки CdTe характеризуються кристалічною структурою, переважно сферичною морфологією та мають розмір 3–8 нм з максимумом люмінесценції у діапазоні 340–370 нм. При дослідженні їх впливу на різні типи клітин ссавців було виявлено, що квантові точки CdTe дозозалежним чином впливають на ендотеліальні клітини миші, еритроцити, Т- і В-лімфоцити людини та щура, клітини раку товстого кишечника (Colo 205) та раку молочної залози людини (MCF-7). Зокрема, спостерігали пригнічення проліферативних показників ендотеліоцитів та збільшення мертвих клітин, що вказує на цитотоксичну дію нанокристалічного CdTe та на його антипроліферативний ефект по відношенню до ендотеліальних клітин. Квантові точки CdTe в концентрації 5 мкМ проявляли гемолітичну активність за дії на еритроцити, впливали на адгезивні контакти та виживаність ракових клітин. При цьому клітини раку молочної залози людини (MCF-7) виявились більш чутливими до їх дії. Отримані дані є вкрай важливими для розуміння механізмів токсичності квантових точок CdTe для їх подальшого використання в біологічних та біомедичних дослідженнях.

Ключові слова: «зелений синтез», квантові точки, CdTe, токсичність, клітини людини, тваринні клітини, культура ракових клітин

Цитологія і генетика
2023, том 57, № 3, 28-39

Current Issue
Cytology and Genetics
2023, том 57, № 3, 229–238,
doi: 10.3103/S0095452723030040

Повний текст та додаткові матеріали

Цитована література

Aldughaim, M.S., Al-Anazi, M.R., Bohol, M.F., Colak, D., Alothaid, H., Wakil, S.M., Hagos, S.T., Ali, D., Alarifi, S., Rout, S., Alkahtani, S., Al-Ahdal, M.N., and Al-Qahtani, A.A., Gene expression and transcriptome profiling of changes in a cancer cell line post-exposure to cadmium telluride quantum dots: possible implications in oncogenesis, Dose-Response, 2021, vol. 19, no. 2, p. 15593258211019880. https://doi.org/10.1177/15593258211019880

Aslan, K. and Geddes, C.D., New tools for rapid clinical and bioagent diagnostics: micro waves and plasmonic nanostructures, Analyst, 2008, vol. 133, pp. 1469–1480. https://doi.org/10.1039/b808292h

Badilli, U., Mollarasouli, F., Bakirhan, N.K., Ozkan, Y., and Ozkan, S.A., Role of quantum dots in pharmaceutical and biomedical analysis, and its application in drug delivery, Trends Anal. Chem., 2020, vol. 131, p. 116013. https://doi.org/10.1016/j.trac.2020.116013

Bao, H., Na, H., Yang, Y., and Zhao, D., Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells, Nano Res., 2010a, vol. 3, pp. 481–489. https://doi.org/10.1007/s12274-010-0008-6

Bao, H., Lu, Z., Cui, X., Qiao, Y., Guo, J., Anderson, J.M., and Li, C.M., Extracellular microbial synthesis of biocompatible CdTe quantum dots, Acta Biomater., 2010b, vol. 6, pp. 3534–3541. https://doi.org/10.1016/j.actbio.2010.03.030

Blume, Y., Yemets, A., Sheremet, Y., Nyporko, A., Sulimenko, V., Sulimenko, T., and Draber, P., Exposure of beta-tubulin regions defined by antibodies on an Arabidopsis thaliana microtubule protofilament model and in the cells, BMC Plant Biol., 2010, vol. 10, p. 29. https://doi.org/10.1186/1471-2229-10-29

Blume, Y.B., Krasylenko, Y.A., Demchuk, O.M., and Yemets, A.I., Tubulin tyrosine nitration regulates microtubule organization in plant cells, Front. Plant Sci., 2013, vol. 4, p. 530. https://doi.org/10.3389/fpls.2013.00530

Borovaya, M.N., Burlaka, O.M., Yemets, A.I., and Blume, Ya.B., Biosynthesis of quantum dots and their potential applications in biology and biomedicine, in Nanoplasmonics, Nano-Optics, Nanocomposites, and Surface Studies, Fesenko, O. and Yatsenko, L., Eds., Springer-Verlag, 2015a, vol. 167, pp. 339–362. https://doi.org/10.1007/978-3-319-18543-9_24

Borovaya, M.N., Pirko, Y.V., Krupodorova, T.A., Naumenko, A.P., Blume, Ya.B., and Yemets, A.I., Biosynthesis of cadmium sulfide quantum dots using Pleurotus ostreatus (Jacq.) P. Kumm. Biotechnol. Biotechnol. Equip., 2015b, vol. 29, no. 6, pp. 1156–1163. https://doi.org/10.1080/13102818.2015.1064264

Cao, Y., The toxicity of nanoparticles to human endothelial cells, Adv. Exp. Med. Biol., 2018, vol. 1048, pp. 59–69. https://doi.org/10.1007/978-3-319-72041-8_4

Chang, Y., Cheng, X., Zhang, J., and Yu, D., Highly stable CdTe quantum dots hosted in gypsum via a flocculation-precipitation method, J. Mater. Chem. C., 2019, vol. 7, pp. 12336–12342. https://doi.org/10.1039/C9TC04412D

Chen, N., He, Y., Su, Y., Li, X., Huang, Q., Wang, H., Zhang, X., Tai, R., and Fan, C., The cytotoxicity of cadmium-based quantum dots, Biomaterials, 2012, vol. 33, pp. 1238–1244. https://doi.org/10.1016/j.biomaterials.2011.10.070

de la Нarpe, K.M., Kondiah, P.P.D., Choonara, Y.E., Marimuthu, T., Toit, L.C., and Pillay, V., The hemocompatibility of nanoparticles: a review of cell-nanoparticle interactions and hemostasis, Cells, 2019, vol. 8, no. 10, p. 1209. https://doi.org/10.3390/cells8101209

Fan, Z., Dongmei, Y., Haizhu, S., and Hao, Z., Cadmium-based quantum dots: preparation, surface modification, and applications, J. Nanosci. Nanotechnol., 2014, vol. 14, no. 2, pp. 1409–1424. https://doi.org/https://doi.org/10.1166/jnn.2014.8751

Fatima, I., Rahdar, A., Sargazi, S., Barani, M., Hassanisaadi, M., and Thakur, V.K., Quantum dots: synthesis, antibody conjugation, and HER2-receptor targeting for breast cancer therapy, J. Funct. Biomater., 2021, vol. 12, p. 75. https://doi.org/10.3390/jfb12040075

Garmanchuk, L.V., Borovaya, M.N., Nehelia, A.O., Inomistova, M., Khranovska, N.M., Tolstanova, G.M., Blume, Ya.B., and Yemets, A.I., CdS quantum dots obtained by “green” synthesis: comparative analysis of toxicity and effects on the proliferative and adhesive activity of human cells, Cytol. Genet., 2019, vol. 53, no. 2, pp. 132–142. https://doi.org/10.3103/S0095452719020026

Gil, H.M., Price, T.W., Chelani, K., Bouillard, J.G., Calaminus, S.D., Stasiuk, G.J., NIR-quantum dots in biomedical imaging and their future, iScience, 2021, vol. 24, no. 3, p. 102189. https://doi.org/10.1016/j.isci.2021.102189

Green, M., Haigh, S.J., Lewis, E.A., Sandiford, L., Burkitt-Gray, M., Fleck, R., Vizcay-Barrena, G., Jensen, L., Mirzai, H., Curry, R.J., and Dailey, L.-A., The biosynthesis of infrared-emitting quantum dots in Allium fistulosum, Sci. Rep., 2016, vol. 6, p. 20480. https://doi.org/10.1038/srep20480

Jan, S.N., Somanna, P., and Patil, A.B., Application of quantum dots in drug delivery, Nanosci. Nanotech. Asia, 2022, vol. 12, no. 1, p. e070921191305. https://doi.org/10.2174/2210681211666210211092823

Janiszewska, M., Primi, M., and Izard, T., Cell adhesion in cancer: Beyond the migration of single cells, J. Biol. Chem., 2020, vol. 295, no. 8, pp. 2495–2505. https://doi.org/10.1074/jbc.REV119.007759

Jha, S., Mathur, P., Ramteke, S., and Jain, N.K., Pharmaceutical potential of quantum dots, Artif. Cells Nanomed. Biotechnol., 2018, vol. 46, no. 1, pp. 57–65. https://doi.org/10.1080/21691401.2017.1411932

Jigyasu, A.K., Siddiqui, S., Jafri, A., Arshad, M., Lohani, M., and Khan, I.A., Biological synthesis of CdTe quantum dots and their anti-proliferative assessment against prostate cancer cell line, J. Nanosci. Nanotechnol., 2020, vol. 20, no. 6, pp. 3398–3403. https://doi.org/10.1166/jnn.2020.17316

Kadim, A.M., Applications of cadmium telluride (CdTe) in nanotechnology, in Nanomaterials – Toxicity, Human Health and Environment, Clichici, S., Filip, A., and do Nascimento, G.M., Eds., Intech, 2019, pp. 1–11. https://doi.org/10.5772/intechopen.85506

Kairdolf, B.A., Smith, A.M., Stokes, T.H., Wang, M.D., Young, A.N., and Nie, S., Semiconductor quantum dots for bioimaging and biodiagnostic applications, Ann. Rev. Anal. Chem., 2013, vol. 6, no. 1, p. 143. https://doi.org/10.1146/annurev-anchem-060908-155136

Kapush, O.A., Trishchuk, L.I., Tomashik, V.N., and Tomashik, Z.F., Effect of thioglycolic acid on the stability and photoluminescence properties of colloidal solutions of CdTe nanocrystals, Inorg. Mater., 2014, no. 50, pp. 13–18. https://doi.org/10.1134/S0020168514010105

Katubi, K.M., Alzahrani, F.M., Ali, D., and Alarif, S., Dose-and duration-dependent cytotoxicity and genotoxicity in human hepato carcinoma cells due to CdTe QDs exposure, Human Exp. Toxicol., 2019, vol. 38, no. 8, pp. 914–926. https://doi.org/10.1177/0960327119843578

Kumar, P., Semiconductor (CdSe and CdTe) quantum dot: Synthesis, properties and applications, Materialstoday: Proc., 2022, vol. 51, no. 6, pp. 900–904. https://doi.org/10.1016/j.matpr.2021.06.281

Liu, N. and Tang, M., Toxicity of different types of quantum dots to mammalian cells in vitro: An update review, J. Hazard. Mater., 2020, vol. 399, p. 122606. https://doi.org/10.1016/j.jhazmat.2020.122606

Matea, C.T., Mocan, T., Tabaran, F., Pop, T., Mosteanu, O., Puia, C., Iancu, C.,and Mocan, L., Quantum dots in imaging, drug delivery and sensor applications, Int. J. Nanomed., 2017, vol. 12, pp. 5421–5431. https://doi.org/10.2147/IJN.S138624

Matea, C.T., Mocan, T., Tabaran, F., Pop, T., Mosteanu, O., Puia, C., Iancu, C., and Mocan, L., Quantum dots in imaging, drug delivery and sensor applications, Int. J. Nanomed., 2017, vol. 12, pp. 5421–5431. https://doi.org/10.2147/IJN.S138624

Naderi, S., Zare, H., Taghavinia, N., Irajizad, A., Aghaei, M., and Panjehpour, M., Cadmium telluride quantum dots induce apoptosis in human breast cancer cell lines, Toxicol. Ind. Health, 2018, vol. 34, pp. 339–352. https://doi.org/10.1177/0748233718763517

Nel, A., Xia T., Madler, L., and Li, N., Toxic potential of materials at the nanolevel, Science, 2006, vol. 311, pp. 622–627. https://doi.org/10.1126/science.1114397

Nguyen, K.C., Seligy, V.L., and Tayabali, A.F., Cadmium telluride quantum dot nanoparticle cytotoxicity and effects on model immune responses to Pseudomonas aeruginosa, Nanotoxicology, 2013, vol. 7, pp. 202–211. https://doi.org/10.3109/17435390.2011.648667

Osovsky, R., Kloper, V., Kolny-Olesiak, J., Sashchiuk, A., and Lifshitz, E., Optical properties of CdTe nanocrystal quantum dots, grown in the presence of Cd0 nanoparticles, J. Phys. Chem. C, 2007, vol. 111, pp. 10841–10847. https://doi.org/10.1021/jp071979e

Pei, J., Zhu, H., Wang, X., Zhang, H., and Yang, X., Synthesis of cysteamine-coated CdTe quantum dots and its application in mercury (II) detection, Anal. Chim. Acta, 2012, vol. 757, pp. 63–68. https://doi.org/10.1016/j.aca.2012.10.037

Ruzycka-Ayoush, M., Kowalik, P., Kowalczyk, A., Bujak, P., Nowicka, A.M., Wojewodzka, M., Kruszewski, M., and Grudzinski, I.P., Quantum dots as targeted doxorubicin drug delivery nanosystems in human lung cancer cells, Cancer Nanotechnol., 2021, vol. 12, p. 8. https://doi.org/10.1186/s12645-021-00077-9

Sadaf, A., Zeshan, B., Wang, Z., Cui, Y., et al., Toxicity evaluation of hydrophilic CdTe quantum dots and CdTe/SiO2 nanoparticles in mice, J. Nanosci. Nanotechnol., 2012, vol. 12, no. 11, pp. 8287–8292. https://doi.org/10.1166/jnn.2012.6667

Sahoo, S.L., Liu, C.-H., Kumari, M., Wu, W.-C., and Wang, C.-C., Biocompatible quantum dot-antibody conjugate for cell imaging, targeting and fluorometric immunoassay: crosslinking, characterization and applications, RSC Adv., 2019, vol. 9, pp. 32791–32803. https://doi.org/10.1039/c9ra07352c

Syed, A. and Ahmad, A., Extracellular biosynthesis of CdTe quantum dots by the fungus Fusarium oxysporum and their anti-bacterial activity, Spectrochim. Acta, Part A, 2013, vol. 106, pp. 41–47. https://doi.org/10.1016/j.saa.2013.01.002

Talapin, D.V., Haubold, S., Rogach, A.L., Kornowski, A., Haase, M., and Weller, H., A novel organometallic synthesis of highly luminescent CdTe nanocrystals, J. Phys. Chem. B, 2001, vol. 105, pp. 2260–2263. https://doi.org/10.1021/jp003177o

Yan, M., Zhang, Y., Xu, K., Fu, T., Qin, H., and Zheng, X., An in vitro study of vascular endothelial toxicity of CdTe quantum dots, Toxicology, 2011, vol. 282, pp. 94–103. https://doi.org/10.1016/j.tox.2011.01.015

Yemets, A., Stelmakh, O., and Blume, Y.B., Effects of the herbicide isopropyl-N-phenyl carbamate on microtubules and MTOCs in lines of Nicotiana sylvestris resistant and sensitive to its action, Cell Biol. Int., 2008, vol. 32, no. 6, pp. 623–629. https://doi.org/10.1016/j.cellbi.2008.01.012

Yu, Y., Xu, L., Chen, J., Gao, H., Wang, S., Fang, J., and Xu, S., Hydrothermal synthesis of GSH–TGA cocapped CdTe quantum dots and their application in labeling colorectal cancer cells, Colloids Surf., B, 2012, vol. 95, pp. 247–253. https://doi.org/10.1016/j.colsurfb.2012.03.011

Zhang, Y., Kaji, N., Tokeshi, M., and Baba, Y., Nanobiotechnology: quantum dots in bioimaging, Exp. Rev. Proteomics, 2007, vol. 4, no. 4, pp. 565–572. https://doi.org/10.1586/14789450.4.4.565

Zhao, M.X. and Zhu, B.J., The research and applications of quantum dots as nano-carriers for targeted drug delivery and cancer therapy, Nanoscale Res. Lett., 2016, vol. 11, p. 207. https://doi.org/10.1186/s11671-016-1394-9