Оскільки нанорозмірність у поєднанні з люмінесцентними властивостями та перспективними застосуваннями в різних галузях оптоелектроніки та біомедицини зумовлює зростаючий інтерес до вивчення особливостей квантових точок телуриду кадмію, нами було розроблено метод «зеленого» синтезу квантових точок CdTe з використанням культури міцелію Pleurotus ostreatus як біологічної матриці. При дослідженні їх фізико-хімічних характеристик було встановлено, що синтезовані квантові точки CdTe характеризуються кристалічною структурою, переважно сферичною морфологією та мають розмір 3–8 нм з максимумом люмінесценції у діапазоні 340–370 нм. При дослідженні їх впливу на різні типи клітин ссавців було виявлено, що квантові точки CdTe дозозалежним чином впливають на ендотеліальні клітини миші, еритроцити, Т- і В-лімфоцити людини та щура, клітини раку товстого кишечника (Colo 205) та раку молочної залози людини (MCF-7). Зокрема, спостерігали пригнічення проліферативних показників ендотеліоцитів та збільшення мертвих клітин, що вказує на цитотоксичну дію нанокристалічного CdTe та на його антипроліферативний ефект по відношенню до ендотеліальних клітин. Квантові точки CdTe в концентрації 5 мкМ проявляли гемолітичну активність за дії на еритроцити, впливали на адгезивні контакти та виживаність ракових клітин. При цьому клітини раку молочної залози людини (MCF-7) виявились більш чутливими до їх дії. Отримані дані є вкрай важливими для розуміння механізмів токсичності квантових точок CdTe для їх подальшого використання в біологічних та біомедичних дослідженнях.
Ключові слова: «зелений синтез», квантові точки, CdTe, токсичність, клітини людини, тваринні клітини, культура ракових клітин
Повний текст та додаткові матеріали
Цитована література
Aldughaim, M.S., Al-Anazi, M.R., Bohol, M.F., Colak, D., Alothaid, H., Wakil, S.M., Hagos, S.T., Ali, D., Alarifi, S., Rout, S., Alkahtani, S., Al-Ahdal, M.N., and Al-Qahtani, A.A., Gene expression and transcriptome profiling of changes in a cancer cell line post-exposure to cadmium telluride quantum dots: possible implications in oncogenesis, Dose-Response, 2021, vol. 19, no. 2, p. 15593258211019880. https://doi.org/10.1177/15593258211019880
Aslan, K. and Geddes, C.D., New tools for rapid clinical and bioagent diagnostics: micro waves and plasmonic nanostructures, Analyst, 2008, vol. 133, pp. 1469–1480. https://doi.org/10.1039/b808292h
Badilli, U., Mollarasouli, F., Bakirhan, N.K., Ozkan, Y., and Ozkan, S.A., Role of quantum dots in pharmaceutical and biomedical analysis, and its application in drug delivery, Trends Anal. Chem., 2020, vol. 131, p. 116013. https://doi.org/10.1016/j.trac.2020.116013
Bao, H., Na, H., Yang, Y., and Zhao, D., Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells, Nano Res., 2010a, vol. 3, pp. 481–489. https://doi.org/10.1007/s12274-010-0008-6
Bao, H., Lu, Z., Cui, X., Qiao, Y., Guo, J., Anderson, J.M., and Li, C.M., Extracellular microbial synthesis of biocompatible CdTe quantum dots, Acta Biomater., 2010b, vol. 6, pp. 3534–3541. https://doi.org/10.1016/j.actbio.2010.03.030
Blume, Y., Yemets, A., Sheremet, Y., Nyporko, A., Sulimenko, V., Sulimenko, T., and Draber, P., Exposure of beta-tubulin regions defined by antibodies on an Arabidopsis thaliana microtubule protofilament model and in the cells, BMC Plant Biol., 2010, vol. 10, p. 29. https://doi.org/10.1186/1471-2229-10-29
Blume, Y.B., Krasylenko, Y.A., Demchuk, O.M., and Yemets, A.I., Tubulin tyrosine nitration regulates microtubule organization in plant cells, Front. Plant Sci., 2013, vol. 4, p. 530. https://doi.org/10.3389/fpls.2013.00530
Borovaya, M.N., Burlaka, O.M., Yemets, A.I., and Blume, Ya.B., Biosynthesis of quantum dots and their potential applications in biology and biomedicine, in Nanoplasmonics, Nano-Optics, Nanocomposites, and Surface Studies, Fesenko, O. and Yatsenko, L., Eds., Springer-Verlag, 2015a, vol. 167, pp. 339–362. https://doi.org/10.1007/978-3-319-18543-9_24
Borovaya, M.N., Pirko, Y.V., Krupodorova, T.A., Naumenko, A.P., Blume, Ya.B., and Yemets, A.I., Biosynthesis of cadmium sulfide quantum dots using Pleurotus ostreatus (Jacq.) P. Kumm. Biotechnol. Biotechnol. Equip., 2015b, vol. 29, no. 6, pp. 1156–1163. https://doi.org/10.1080/13102818.2015.1064264
Cao, Y., The toxicity of nanoparticles to human endothelial cells, Adv. Exp. Med. Biol., 2018, vol. 1048, pp. 59–69. https://doi.org/10.1007/978-3-319-72041-8_4
Chang, Y., Cheng, X., Zhang, J., and Yu, D., Highly stable CdTe quantum dots hosted in gypsum via a flocculation-precipitation method, J. Mater. Chem. C., 2019, vol. 7, pp. 12336–12342. https://doi.org/10.1039/C9TC04412D
Chen, N., He, Y., Su, Y., Li, X., Huang, Q., Wang, H., Zhang, X., Tai, R., and Fan, C., The cytotoxicity of cadmium-based quantum dots, Biomaterials, 2012, vol. 33, pp. 1238–1244. https://doi.org/10.1016/j.biomaterials.2011.10.070
de la Нarpe, K.M., Kondiah, P.P.D., Choonara, Y.E., Marimuthu, T., Toit, L.C., and Pillay, V., The hemocompatibility of nanoparticles: a review of cell-nanoparticle interactions and hemostasis, Cells, 2019, vol. 8, no. 10, p. 1209. https://doi.org/10.3390/cells8101209
Fan, Z., Dongmei, Y., Haizhu, S., and Hao, Z., Cadmium-based quantum dots: preparation, surface modification, and applications, J. Nanosci. Nanotechnol., 2014, vol. 14, no. 2, pp. 1409–1424. https://doi.org/https://doi.org/10.1166/jnn.2014.8751
Fatima, I., Rahdar, A., Sargazi, S., Barani, M., Hassanisaadi, M., and Thakur, V.K., Quantum dots: synthesis, antibody conjugation, and HER2-receptor targeting for breast cancer therapy, J. Funct. Biomater., 2021, vol. 12, p. 75. https://doi.org/10.3390/jfb12040075
Garmanchuk, L.V., Borovaya, M.N., Nehelia, A.O., Inomistova, M., Khranovska, N.M., Tolstanova, G.M., Blume, Ya.B., and Yemets, A.I., CdS quantum dots obtained by “green” synthesis: comparative analysis of toxicity and effects on the proliferative and adhesive activity of human cells, Cytol. Genet., 2019, vol. 53, no. 2, pp. 132–142. https://doi.org/10.3103/S0095452719020026
Gil, H.M., Price, T.W., Chelani, K., Bouillard, J.G., Calaminus, S.D., Stasiuk, G.J., NIR-quantum dots in biomedical imaging and their future, iScience, 2021, vol. 24, no. 3, p. 102189. https://doi.org/10.1016/j.isci.2021.102189
Green, M., Haigh, S.J., Lewis, E.A., Sandiford, L., Burkitt-Gray, M., Fleck, R., Vizcay-Barrena, G., Jensen, L., Mirzai, H., Curry, R.J., and Dailey, L.-A., The biosynthesis of infrared-emitting quantum dots in Allium fistulosum, Sci. Rep., 2016, vol. 6, p. 20480. https://doi.org/10.1038/srep20480
Jan, S.N., Somanna, P., and Patil, A.B., Application of quantum dots in drug delivery, Nanosci. Nanotech. Asia, 2022, vol. 12, no. 1, p. e070921191305. https://doi.org/10.2174/2210681211666210211092823
Janiszewska, M., Primi, M., and Izard, T., Cell adhesion in cancer: Beyond the migration of single cells, J. Biol. Chem., 2020, vol. 295, no. 8, pp. 2495–2505. https://doi.org/10.1074/jbc.REV119.007759
Jha, S., Mathur, P., Ramteke, S., and Jain, N.K., Pharmaceutical potential of quantum dots, Artif. Cells Nanomed. Biotechnol., 2018, vol. 46, no. 1, pp. 57–65. https://doi.org/10.1080/21691401.2017.1411932
Jigyasu, A.K., Siddiqui, S., Jafri, A., Arshad, M., Lohani, M., and Khan, I.A., Biological synthesis of CdTe quantum dots and their anti-proliferative assessment against prostate cancer cell line, J. Nanosci. Nanotechnol., 2020, vol. 20, no. 6, pp. 3398–3403. https://doi.org/10.1166/jnn.2020.17316
Kadim, A.M., Applications of cadmium telluride (CdTe) in nanotechnology, in Nanomaterials – Toxicity, Human Health and Environment, Clichici, S., Filip, A., and do Nascimento, G.M., Eds., Intech, 2019, pp. 1–11. https://doi.org/10.5772/intechopen.85506
Kairdolf, B.A., Smith, A.M., Stokes, T.H., Wang, M.D., Young, A.N., and Nie, S., Semiconductor quantum dots for bioimaging and biodiagnostic applications, Ann. Rev. Anal. Chem., 2013, vol. 6, no. 1, p. 143. https://doi.org/10.1146/annurev-anchem-060908-155136
Kapush, O.A., Trishchuk, L.I., Tomashik, V.N., and Tomashik, Z.F., Effect of thioglycolic acid on the stability and photoluminescence properties of colloidal solutions of CdTe nanocrystals, Inorg. Mater., 2014, no. 50, pp. 13–18. https://doi.org/10.1134/S0020168514010105
Katubi, K.M., Alzahrani, F.M., Ali, D., and Alarif, S., Dose-and duration-dependent cytotoxicity and genotoxicity in human hepato carcinoma cells due to CdTe QDs exposure, Human Exp. Toxicol., 2019, vol. 38, no. 8, pp. 914–926. https://doi.org/10.1177/0960327119843578
Kumar, P., Semiconductor (CdSe and CdTe) quantum dot: Synthesis, properties and applications, Materialstoday: Proc., 2022, vol. 51, no. 6, pp. 900–904. https://doi.org/10.1016/j.matpr.2021.06.281
Liu, N. and Tang, M., Toxicity of different types of quantum dots to mammalian cells in vitro: An update review, J. Hazard. Mater., 2020, vol. 399, p. 122606. https://doi.org/10.1016/j.jhazmat.2020.122606
Matea, C.T., Mocan, T., Tabaran, F., Pop, T., Mosteanu, O., Puia, C., Iancu, C.,and Mocan, L., Quantum dots in imaging, drug delivery and sensor applications, Int. J. Nanomed., 2017, vol. 12, pp. 5421–5431. https://doi.org/10.2147/IJN.S138624
Matea, C.T., Mocan, T., Tabaran, F., Pop, T., Mosteanu, O., Puia, C., Iancu, C., and Mocan, L., Quantum dots in imaging, drug delivery and sensor applications, Int. J. Nanomed., 2017, vol. 12, pp. 5421–5431. https://doi.org/10.2147/IJN.S138624
Naderi, S., Zare, H., Taghavinia, N., Irajizad, A., Aghaei, M., and Panjehpour, M., Cadmium telluride quantum dots induce apoptosis in human breast cancer cell lines, Toxicol. Ind. Health, 2018, vol. 34, pp. 339–352. https://doi.org/10.1177/0748233718763517
Nel, A., Xia T., Madler, L., and Li, N., Toxic potential of materials at the nanolevel, Science, 2006, vol. 311, pp. 622–627. https://doi.org/10.1126/science.1114397
Nguyen, K.C., Seligy, V.L., and Tayabali, A.F., Cadmium telluride quantum dot nanoparticle cytotoxicity and effects on model immune responses to Pseudomonas aeruginosa, Nanotoxicology, 2013, vol. 7, pp. 202–211. https://doi.org/10.3109/17435390.2011.648667
Osovsky, R., Kloper, V., Kolny-Olesiak, J., Sashchiuk, A., and Lifshitz, E., Optical properties of CdTe nanocrystal quantum dots, grown in the presence of Cd0 nanoparticles, J. Phys. Chem. C, 2007, vol. 111, pp. 10841–10847. https://doi.org/10.1021/jp071979e
Pei, J., Zhu, H., Wang, X., Zhang, H., and Yang, X., Synthesis of cysteamine-coated CdTe quantum dots and its application in mercury (II) detection, Anal. Chim. Acta, 2012, vol. 757, pp. 63–68. https://doi.org/10.1016/j.aca.2012.10.037
Ruzycka-Ayoush, M., Kowalik, P., Kowalczyk, A., Bujak, P., Nowicka, A.M., Wojewodzka, M., Kruszewski, M., and Grudzinski, I.P., Quantum dots as targeted doxorubicin drug delivery nanosystems in human lung cancer cells, Cancer Nanotechnol., 2021, vol. 12, p. 8. https://doi.org/10.1186/s12645-021-00077-9
Sadaf, A., Zeshan, B., Wang, Z., Cui, Y., et al., Toxicity evaluation of hydrophilic CdTe quantum dots and CdTe/SiO2 nanoparticles in mice, J. Nanosci. Nanotechnol., 2012, vol. 12, no. 11, pp. 8287–8292. https://doi.org/10.1166/jnn.2012.6667
Sahoo, S.L., Liu, C.-H., Kumari, M., Wu, W.-C., and Wang, C.-C., Biocompatible quantum dot-antibody conjugate for cell imaging, targeting and fluorometric immunoassay: crosslinking, characterization and applications, RSC Adv., 2019, vol. 9, pp. 32791–32803. https://doi.org/10.1039/c9ra07352c
Syed, A. and Ahmad, A., Extracellular biosynthesis of CdTe quantum dots by the fungus Fusarium oxysporum and their anti-bacterial activity, Spectrochim. Acta, Part A, 2013, vol. 106, pp. 41–47. https://doi.org/10.1016/j.saa.2013.01.002
Talapin, D.V., Haubold, S., Rogach, A.L., Kornowski, A., Haase, M., and Weller, H., A novel organometallic synthesis of highly luminescent CdTe nanocrystals, J. Phys. Chem. B, 2001, vol. 105, pp. 2260–2263. https://doi.org/10.1021/jp003177o
Yan, M., Zhang, Y., Xu, K., Fu, T., Qin, H., and Zheng, X., An in vitro study of vascular endothelial toxicity of CdTe quantum dots, Toxicology, 2011, vol. 282, pp. 94–103. https://doi.org/10.1016/j.tox.2011.01.015
Yemets, A., Stelmakh, O., and Blume, Y.B., Effects of the herbicide isopropyl-N-phenyl carbamate on microtubules and MTOCs in lines of Nicotiana sylvestris resistant and sensitive to its action, Cell Biol. Int., 2008, vol. 32, no. 6, pp. 623–629. https://doi.org/10.1016/j.cellbi.2008.01.012
Yu, Y., Xu, L., Chen, J., Gao, H., Wang, S., Fang, J., and Xu, S., Hydrothermal synthesis of GSH–TGA cocapped CdTe quantum dots and their application in labeling colorectal cancer cells, Colloids Surf., B, 2012, vol. 95, pp. 247–253. https://doi.org/10.1016/j.colsurfb.2012.03.011
Zhang, Y., Kaji, N., Tokeshi, M., and Baba, Y., Nanobiotechnology: quantum dots in bioimaging, Exp. Rev. Proteomics, 2007, vol. 4, no. 4, pp. 565–572. https://doi.org/10.1586/14789450.4.4.565
Zhao, M.X. and Zhu, B.J., The research and applications of quantum dots as nano-carriers for targeted drug delivery and cancer therapy, Nanoscale Res. Lett., 2016, vol. 11, p. 207. https://doi.org/10.1186/s11671-016-1394-9