РЕЗЮМЕ. Низка експериментальних робіт демонструє важливе значення мікроРНК у ембріональному розвитку скелету та остеогенному диференціюванні. Однак молекулярні механізми дії мікроРНК лишаються не до кінця з’ясованими, тобто наразі не відомо достеменно які саме сигнальні шляхи та транскрипційні фактори остеогенезу є мішенями мікроРНК. Тож, за допомогою мета аналізу ми ідентифікували мікроРНК що достовірно залучені до остеогенного диференціювання МСК людини. Статистичний аналіз виявив тренд підвищення експресії наступних мікроРНК let-7a, mir-21, mir-26a, mir-29b, mir-101, mir-143, mir-218 під час остеогенного диференціювання. І навпаки, зниження експресії виявили для mir-17, mir-31, mir-138 and mir-222. Із застосуванням біоінформатичних методів досліджень ми ідентифікували передбачувані гени-мішені для кожної з вказаних вище мікроРНК та проаналізували які сигнальні мережі та біологічні процеси збагачені ідентифікованими генами. У результаті ми продемонстрували, що мікроРНК специфічно регулюють остеогенез МСК людини сприяючи формуванню мікрооточення (let-7a, mir-17, mir-21, mir-29b і mir-101), регулюють активність TGF-β/BMP–SMAD залежного сигнального каскаду (let-7a, mir-17, mir-21, mir-26a і mir-101) та MAPK сигнального шляху (let-7a, mir-21, mir-26a, mir-29b, mir-143 та mir17). Yap-залежна експресія остеогенних транскрипційних факторів let-7a, mir-31mir-101, mir-138 та mir-222. Ми передбачили, що mir-17, mir-26a, mir-29b, mir-101, mir-138 та mir-222 залучені у регулювання канонічного Wnt сигнального каскаду та остеогенезу відповідною. Окрім того, mir-17, mir-26a, mir-29b, mir-101, mir-138 та mir-222 разом з let-7a, mir-29b та mir-218 регулюють дозрівання остеобластів, оскільки let-7a, mir-29b та mir-218 здатні модулювати активність AMPK сигнального каскаду. Окрім того, ідентифікована нами mir-101 вочевидь регулює гомеостаз остеобластів опосередковано через Hedgehog сигнальний каскад. Загалом, отримані нами дані розширюють та систематизують існуючі знання щодо ролі мікроРНК у регулюванні остеогенезу та долі МСК людини, ідентифікуючи про-остеоегенні та анти-остеогенні мікроРНК та їхні потенційні молекулярні механізми дії.
Ключові слова: cells signaling, differentiation, miR, microRNA, osteogenesis, osteogenic lineage, hMSCs
Повний текст та додаткові матеріали
Цитована література
Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, 2004, vol. 116, no. 2, pp. 281–297
Betel, D., Wilson, M., Gabow, A., Marks, D.S., and Sander, C., The microRNA.org resource: targets and expression, Nucleic Acids Res., 2008, vol. 36, pp. D149–D153. https://doi.org/10.1093/nar/gkm995
Brandaõ, A.S., Bensimon-Brito, A., Lourenço, R., Borbinha1, J., Soares, A.R., Mateus, R., Jacinto, A., Yap induces osteoblast differentiation by modulating Bmp signalling during zebrafish caudal fin regeneration, J. Cell Sci., 2019, vol. 132, p. jcs231993. https://doi.org/10.1242/jcs.231993
Bruderer, M., Richards, R.G., Alini, M., and Stoddart, M.J., Role and regulation of RUNX2 in osteogenesis, Eur. Cells Mater., 2014, vol. 28, pp. 269–286. https://doi.org/10.22203/eCM.v028a19
Discher, D., Mooney, D., and Zandstra, P., Growth factors, matrices, and forces combine and control stem cells, Science, 2009, vol. 324, no. 5935, pp. 1673–1677. https://doi.org/10.1126/science.1171643
Felber, K., Elks, P.M., Lecca, M., Roehl, H.H., Expression of osterix is regulated by FGF and Wnt/β-catenin signalling during osteoblast differentiation, PLoS One, 2015, vol. 10, no. 12, p. e0144982. https://doi.org/10.1371/journal.pone.0144982
Fröhlich, L.F., Micrornas at the interface between osteogenesis and angiogenesis as targets for bone regeneration, Cells, 2019, vol. 8, no. 2. https://doi.org/10.3390/cells8020121
Gebauer, F. and Hentze, M.W., Molecular mechanisms of translational control, Nat. Rev. Mol. Cell Biol., 2004, vol. 5, no. 10, pp. 827–835
Grimson, A., Farh, K.K., Johnston, W.K., Garrett-Engele, P., Lim, L.P., and Bartel, D.P., MicroRNA targeting specificity in mammals: Determinants beyond seed pairing, Mol. Cell, 2007, vol. 27, pp. 91–105. https://doi.org/10.1016/j.molcel.2007.06.017
Guo, P.-Y., Wu, L.-F., Xiao, Z.-Y., Huang, T.-L., and Li, X., Knockdown of MiR-140-5 promotes osteogenesis of adipose-derived mesenchymal stem cells by targeting TLR4 and BMP2 and promoting fracture healing in the atrophic nonunion rat model, Eur. Rev. Med. Pharmacol. Sci., 2019, vol. 23, no. 5, pp. 2112–2124. https://doi.org/10.26355/eurrev_201903_17255
Heberle, H., Meirelles, G.V., da Silva, F.R., Telles, G.P., and Minghim, R., Interacti Venn: a web-based tool for the analysis of sets through Venn diagrams, BMC Bioinf., 2015, vol. 16, p. 169. https://doi.org/10.1186/s12859-015-0611-3
Houschyar, K.S., Tapking, C., Borrelli, M.R., Popp, D., Duscher, D., Maan, Z.N., et al., Wnt Pathway in Bone Repair and Regeneration – What Do We Know So Far, Front. Cell Dev. Biol., 2019, vol. 6, p. 170. https://doi.org/10.3389/fcell.2018.00170
Huang, W., Yang, S., Shao, J., and Li, Y.-P., Signaling and transcriptional regulation in osteoblast commitment and differentiation, Front. Biosci., 2007, vol. 12, pp. 3068–3092.
Jeggari, A., Alekseenko, Z., Dias, J., Ericson, J., and Alexeyenko, A., EviNet: a web platform for network enrichment analysis with flexible definition of gene sets, Nucleic Acids Res., 2018, vol. 46, no. 1, pp. W163–W170. https://doi.org/10.1002/1878-0261.12350
Jeyabalan, J., Shah, M., Viollet, B., and Chenu, C., AMP-activated protein kinase pathway and bone metabolism, J. Endocrinol., 2012, vol. 212, no. 3, pp. 277–290.
Jiang, X., Zhang, Z., Peng, T., Wang, G., Xu, Q., and Li, G., miR204 inhibits the osteogenic differentiation of mesenchymal stem cells by targeting bone morphogenetic protein 2, Mol. Med. Rep., 2020, vol. 21, pp. 43–50.
Jing, D., Hao, J., Shen, Y., et al., The role of microRNAs in bone remodeling, Int. J. Oral. Sci., 2015, vol. 7, pp. 131–143. https://doi.org/10.1038/ijos.2015.22
Karner, C.M. and Long, F., Wnt signaling and cellular metabolism in osteoblasts, Cell. Mol. Life Sci.: CMLS, 2017, vol. 74, no. 9, pp. 1649–1657. https://doi.org/10.1007/s00018-016-2425-5
Landrier, J.-F., Derghal, A., and Mounien, L., Micro-RNAs in obesity and related metabolic disorders, Cells, 2019, vol. 8, no. 8, p. 859
Long, H., Zhu, Y., Lin, Z., et al., mir-381 modulates human bone mesenchymal stromal cells (BMSCs) osteogenesis via suppressing Wnt signaling pathway during atrophic nonunion development, Cell Death Dis., 2019, vol. 10, p. 470. https://doi.org/10.1038/s41419-019-1693-z
Lv, W.T., Du, D.H., Gao, R.J., Yu, C.W., Jia, Y., Jia, Z.F., and Wang, C.J., Regulation of hedgehog signaling offers a novel perspective for bone homeostasis disorder treatment, Int. J. Mol. Sci., 2019, vol. 20, no. 16, p. 3981. https://doi.org/10.3390/ijms20163981
Mizuno, Y., Yagi, K., Tokuzawa, Y., Kanesaki-Yatsuka, Y., Suda, T., Katagiri, T., et al., mir-125b inhibits osteoblastic differentiation by down-regulation of cell proliferation, Biochem. Biophys. Res. Commun., 2008, vol. 368, no. 2, pp. 267–272. https://doi.org/10.1016/j.bbrc.2008.01.073
Mohri, T., Nakajima, M., Takagi, S., Komagata, S., and Yokoi, T., MicroRNA regulates human vitamin D receptor, Int. J. Cancer, 2009, vol. 125, no. 6, pp. 1328–1333. https://doi.org/10.1002/ijc.24459
Pan, J.X., Xiong, L., Zhao, K., et al., YAP promotes osteogenesis and suppresses adipogenic differentiation by regulating β-catenin signaling, Bone Res., 2018, vol. 6, p. 18.
Peng, S., Gao, D., Gao, C., Wei, P., Niu, M., and Shuai, C., MicroRNAs regulate signaling pathways in osteogenic differentiation of mesenchymal stem cells (Review), Mol. Med. Rep., 2016, vol. 14, pp. 623–629.
Peng, H., Lu, S.-L., Bai, Y., Fang, X., Huang, H., and Zhuang, H.-Q., MiR-133a inhibits fracture healing via targeting RUNX2/BMP2, Eur. Rev. Med. Pharmacol. Sci., 2018, vol. 22, no. 9, pp. 2519−2526. https://doi.org/10.26355/eurrev_201805_14914
Rodríguez-Carballo, E., Gámez, B., and Ventura, F., p38 MAPK signaling in osteoblast differentiation, Front. Cell Dev. Biol., 2016, vol. 4, p. 40. https://doi.org/10.3389/fcell.2016.00040
Sanpaolo, E.R., Rotondo, C., Cici, D., et al., JAK/STAT pathway and molecular mechanism in bone remodeling, Mol. Biol. Rep., 2020, vol. 47, pp. 9087–9096. https://doi.org/10.1007/s11033-020-05910-9
Schindeler, A. and Little, D.G., Ras-MAPK signaling in osteogenic differentiation: friend or foe?, JBMR Vol., 2006, vol. 21, no. 9, pp. 1331–1338.
Sera, S. and Nieden, N., MicroRNA. Regulation of Skeletal Development, Curr Osteoporosis Rep., 2017, vol. 15, no. 4, pp. 353–366. https://doi.org/10.1007/s11914-017-0379-7
Trompeter, H.-I., Dreesen, J., Herman, E., et al., Micro-RNAs miR-26a, miR-26b, and miR-29b accelerate osteogenic differentiation of unrestricted somatic stem cells from human cord blood, BMC Genomics, 2013, vol. 14, p. 111.
Van Wijnen, A.J., van de Peppel, J., van Leeuwen, J.P., Lian, J.B., Stein, G.S., Westendorf, J.J., et al., MicroR-NA functions in osteogenesis and dysfunctions in osteoporosis, Curr. Osteoporosis Rep., 2013, vol. 11, no. 2, pp. 72–82. https://doi.org/10.1007/s11914-013-0143-6
Wang, J., Liu, S., Li, J., et al., Roles for miRNAs in osteogenic differentiation of bone marrow mesenchymal stem cells, Stem Cell Res. Ther., 2019, vol. 10, p. 197. https://doi.org/10.1186/s13287-019-1309-7
Wang, C., Qiao, X., Zhang, Z., and Li, C., MiR-128 promotes osteogenic differentiation of bone marrow mesenchymal stem cells in rat by targeting DKK2, Biosci. Rep., 2020, vol. 40, no. 2, p. BSR20182121. https://doi.org/10.1042/BSR20182121
Wu, M., Chen, G., and Li, Y.P., TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease, Bone Res., 2016, vol. 4, p. 16009. https://doi.org/10.1038/boneres.2016.9
Wu, X., Gu, Q., Chen, X., Mi, W., Wu, T., and Huang, H., MiR-27a targets DKK2 and SFRP1 to promote reosseointegration in the regenerative treatment of peri-implantitis, J. Bone Miner. Res., 2018, vol. 34, pp. 123–157.
Xu, G., Ding, Z., and Shi, H.-F., The mechanism of miR-889 regulates osteogenesis in human bone marrow mesenchymal stem cells, J. Orthop. Surg. Res., 2019, vol. 14, p. 366. https://doi.org/10.1186/s13018-019-1399-z
Yang, X.M., Song, Y.Q., Li, L., et al., mir-1249-5p regulates the osteogenic differentiation of ADSCs by targeting PDX1, J. Orthop. Surg. Res., 2012, vol. 16, p. 10. https://doi.org/10.1186/s13018-020-02147-x
Yeh, Y.T., Wei, J., Thorossian, S., Nguyen, K., Hoffman, C., del Álamo, C.J., et al., MiR-145 mediates cell morphology-regulated mesenchymal stem cell differentiation to smooth muscle cells, Biomaterials, 2019, vol. 204, pp. 59–69. https://doi.org/10.1016/j.biomaterials.2019.03.003
Zhang, C., Transcriptional regulation of bone formation by the osteoblast-specific transcription factor Osx, J. Orthop. Surg. Res., 2010, vol. 5, p. 37. https://doi.org/10.1186/1749-799X-5-37
Zhang, Y., Gordon, A., Qian, W., and Chen, W., Engineering Nanoscale Stem Cell Niche: Direct Stem Cell Behavior at Cell-Matrix Interface, Adv. Healthcare Mater., 2015, vol. 4, no. 13, p. 1900–1914. https://doi.org/10.1002/adhm.201500351