Цитологія і генетика 2023, том 57, № 3, 10-18
Cytology and Genetics 2023, том 57, № 3, 213–220, doi: https://www.doi.org/10.3103/S0095452723030076

Генетична дивергенція і еволюційний транзитивно/трансверсивний зсув у мишей (Murinae) палеарктики за контрольним регіоном мтДНК

Межжерін С.В., Терещенко В.О.

  • Інститут зоології ім. І.І. Шмальгаузена НАНУ, вул. Б. Хмельницького, 15, Київ, Україна

Генетична дивергенція та еволюційний зсув співвідношення транзицій та трансверсій проаналізовані на прикладі 60 сіквенсів контрольного регіону мтДНК 27 видів мишей (Murinae) Палеарктики. Як контроль взяті представники Cricetidae та Arvicolidae. Побудована фенограма відповідає прийнятій філогенетичній схемі та кластеризується відповідно до популяційного, напіввидового, аловидового, видового, родового та родинного рівнів дивергенції. У філетичному ряду має місце чітко визначений еволюційний зсув співвідношення транзицій та трансверсій. Його особливістю є надзвичайно швидкий і різкий перехід від динамічної до сталої фази. Динамічна фаза являє собою різке зменшення значень ts/tv індексу і відноситься до популяційного та напіввидового рівнів дивергенції. Стала фаза стосується видового і вище рівнів дивергенції і пов’язана з досягненням стану генетичного насичення у ситуації переважання трансверсій. Надзвичайна виразність еволюційного зсуву у ситуації з D-loop може бути пояснена зняттям преса добору, обумовленого обмеженнями на амінокислотні заміни. Це означає, що причинами транзитивно/трансверсивного зсуву є суто біохімічні механізми на рівні ДНК. Разом з тим сталість ts/tv індексу на видовому і вище рівнях на тлі подальшого накопичення нуклеотидних заміщень, може свідчити про різний характер еволюційно-генетичних процесів на внутрішньовидовому та міжвидовому рівнях дивергенції.

Ключові слова: Muridae, D-loop, філогенія, транзитивно-трансверсивний зсув

Цитологія і генетика
2023, том 57, № 3, 10-18

Current Issue
Cytology and Genetics
2023, том 57, № 3, 213–220,
doi: 10.3103/S0095452723030076

Повний текст та додаткові матеріали

Цитована література

Altukhov, Yu.P., Population genetics: diversity and stability, Leningrad: Harwood Acad. Publ., 1993, vol. 221–276.

Amadon, D., The superspecies concept, Syst. Zool., 1966, vol. 15, pp. 246–249. https://doi.org/10.2307/sysbio/15.3.245

Abramov, A.V., Meschersky, I.G., and Rozhnov, V.V., On the taxonomic status of the harvest mouse Micromys minutus (Rodentia: Muridae) from Vietnam, Zootaxa, 2009, no. 1, p. 17. https://doi.org/10.11646/zootaxa.2199.1.2

Bellinvia, E., A phylogenetic study of the genus Apodemus by sequencing the mitochondrial DNA control region, J. Zool. Syst. Evol. Res., 2004, vol. 42, pp. 289–297. https://doi.org/10.1111/j.1439-0469.2004.00270.x

Belle, E., Piganeau, G., Gardner, M., and Eyre-Walker, A., An investigation of the variation in the transition bias among various animal mitochondrial DNA, Gene, 2005, vol. 355, pp. 58–66. https://doi.org/10.1016/j.gene.2005.05.019

Brown, W.M., Prager, E.M., Wang, A., and Wilson, A.C., Mitochondrial DNA sequences of primates: Tempo and mode of evolution, J. Mol. Evol., 1982, vol. 18, pp. 225–239. https://doi.org/10.1007/BF01734101

Collins, D.W. and Jukes, T.H., Rates of transition and transversion in coding sequences since the humanrodent divergence, Genomics, 1994, vol. 20, pp. 386–396. https://doi.org/10.1006/geno.1994.1192

Duchene, S., Ho, S.Y., and Holmes, E.C., Declining transition/transversion ratios through time reveal limitations to the accuracy of nucleotide substitution models, BMC Evol. Biol., 2015, vol. 15, p. 36. https://doi.org/10.1186/s12862-015-0312-6

Ebersberger, I., Metzler, D., Schwarz, C., and Pääbo, S., Genomewide comparison of DNA sequences between humans and chimpanzees, Am. J. Hum. Genet., 2002, vol. 70, no. 6, pp. 1490–1497. https://doi.org/10.1086/340787

Fitch, W.M., Evidence suggesting a non-random character to nucleotide replacements in naturally occurring mutations, J. Mol. Biol., 1967, vol. 26, pp. 499–507. https://doi.org/10.1016/0022-2836(67)90317-8

Ge, D., Feijo, A., Cheng, J., et al., Evolutionary history of field mice (Murinae: Apodemus), with emphasis on morphological variation among species in China and description of a new species, Zool. J. Linn. Soc., 2019, vol. 187, pp. 518–534. https://doi.org/10.1093/zoolinnean/zlz032

Guo, C., McDowell, I.C., Nodzenski, M., et al., Transversions have larger regulatory effects than transitions, BMC Genomics, 2017, vol. 18, p. 394. https://doi.org/10.1186/s12864-017-3785-4

Kumar, S., Patterns of nucleotide substitution in mitochondrial protein coding genes of vertebrates, Genetics, 1996, vol. 143, no. 1, pp. 537–548. https://doi.org/10.1093/genetics/143.1.537

Lynch, M., Rate, molecular spectrum, and consequences of human mutation, Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, pp. 961–968. https://doi.org/10.1073/pnas.0912629107

Lyons, D.M. and Lauring, A.S., Evidence for the selective basis of transition-to-transversion substitution bias in two RNA viruses, Mol. Biol. Evol., 2017, vol. 34, pp. 3205–3215. https://doi.org/10.1093/molbev/msx251

Macholan, M., Vyskocilova, M., Bonhomme, F., et al., Genetic variation and phylogeography of free-living mouse species (genus Mus) in the Balkans and the Middle East, Mol. Ecol., 2007, vol. 16, no. 22, pp. 4774–4788. https://doi.org/10.1111/j.1365-294X.2007.03526.x

Mallet, J., Subspecies, semispecies, superspecies, Encyclopedia Biodiversity, 2007, vol. 7, pp. 45–48. https://doi.org/10.1016/B978-0-12-384719-5.00138-6

Mezhzherin, S.V., Revision of mice genus Apodemus (Rodentia, Muridae) of Northern Eurasia, Vestn. Zool., 1997a, vol. 31, pp. 29–41.

Mezhzherin, S.V., Genetic differentiation and phylogenetic relationships among Palearctic mice (Rodentia, Muridae), Genetika, 1997b, vol. 33, pp. 78–86.

Michaux, J.R., Chevret Filippucci, M.G., et al., Phylogeny of the genus Apodemus with a special emphasis on the subgenus Sylvaemus using the nuclear IRBP gene and two mitochondrial markers: cytochrome b and 12S rR-NA, Mol. Phylogenet. Evol., 2002, vol. 23, no. 2, pp. 123–136. https://doi.org/10.1016/S1055-7903(02)00007-6

Michaux, J., Bellinvia, E., and Lymberakis, P., Taxonomy, evolutionary history and biogeography of the broadtoothed field mouse (Apodemus mystacinus) in the eastern Mediterranean area based on mitochondrial and nuclear genes, Biol. J. Linn. Soc., 2005, vol. 85, no. 1, pp. 53–63. https://doi.org/10.1111/j.1095-8312.2005.00469.x

Philippe, H., Brinkmann, H., Lavrov, D.V., et al., Resolving difficult phylogenetic questions: why more sequences are not enough, PLoS Biol., 2011, vol. 9, no. 3, p. e1000602. https://doi.org/10.1371/journal.pbio.1000602

Rosenberg, M.S., Subramanian, S., and Kumar, S., Patterns of transitional mutation biases within and among mammalian genomes, Mol. Biol. Evol., 2003, vol. 20, no. 6, pp. 988–993. https://doi.org/10.1093/molbev/msg113

Rovatsos, M.T., Mitsainas, G.P., Tryfonopoulos, G.A., et al., A chromosomal study on Greek populations of the genus Apodemus (Rodentia, Murinae) reveals new data on B chromosome distribution, Acta Theriol., 2008, vol. 53, no. 2, pp. 157–167.

Stakheev, V.V., Bogdanov, A.S., Malikov, V.G., et al., Genetic differentiation of the steppe field mouse Sylvaemus witherbyi populations: the results of the mitochondrial DNA control region analysis, Dokl. Biochem. Biophys., 2018, vol. 483, pp. 316–320. https://doi.org/10.1134/S1607672918060029

Stoltzfus, A. and Norris, R.W., On the ñauses of evolutionary transition: transversion bias, Mol. Biol. Evol., 2016, https://doi.org/10.1101/027722

Suzuki, H., Sato, J.J., Tsuchiya, K., et al., Molecular phylogeny of wood mice (Apodemus, Muridae) in East Asia, Biol. J. Linn. Soc., 2003, vol. 80, pp. 469–481. https://doi.org/10.1046/j.1095-8312.2003.00253.x

Suzuki, H., Nunome, M., Kinoshita, G., et al., Evolutionary and dispersal history of Eurasian house mice Mus musculus clarified by more extensive geographic sampling of mitochondrial DNA, Heredity, 2013, vol. 111, pp. 375–390. https://doi.org/10.1038/hdy.2013.60

Tamura, K. and Nei, M., Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees, Mol. Biol. Evol., 1993, vol. 10, no. 3, pp. 512–526. https://doi.org/10.1093/oxfordjournals.molbev.a040023

Tamura, K., Stecher, G., and Kumar, S., MEGA 11: Molecular evolutionary genetics analysis, Version 11, Mol. Biol. Evol., 2021, vol. 38, no. 7, pp. 3022–3027. https://doi.org/10.1093/molbev/msab120

Topal, M.D. and Fresco, J.R., Base pairing and fidelity in codon-anticodon interaction, Nature, 1976a, vol. 263, pp. 289–293. https://doi.org/10.1038/263289a0

Topal, M.D. and Fresco, J.R., Complementary base pairing and the origin of substitution mutations, Nature, 1976b, vol. 263, pp. 285–289. https://doi.org/10.1038/263285a0

Vogel, F. and Kopun, M., Higher frequencies of transitions among point mutations, J. Mol. Evol., 1977, vol. 9, pp. 159–180. https://doi.org/10.1007/BF01732746

Yang, Z. and Yoder, A.D., Estimation of the transition/transversion rate bias and species sampling, J. Mol. Evol., 1999, vol. 48, pp. 274–283. https://doi.org/10.1007/PL00006470