Показано зниження рівня експресії генів Cftr та Ocln при загоюванні як повношарових вирізаних площинних ран, так і гнійно-некротичних ран шкіри щурів на тлі зростання рівня експресії гена Nfkb1. Відновлення рівня експресії Ocln може бути опосередковано зростанням рівня експресії гена Cftr за рахунок зменшення рівня мРНК гена Nfkb1. При застосуванні меланіну за тих
самих умов експресія Cftr та Ocln швидше наближалася до відповідних значень контрольної групи щурів за відсутності гіперекспресії гена Nfkb1, під час відновлення цілісності шкіри.
Ключові слова: експресія генів Cftr, Nfkb1, Ocln, повно-шарові вирізані площинні рани та гнійно-некротичні рани шкіри, меланін
Повний текст та додаткові матеріали
Цитована література
Alvim, F. and Addor, S., Antioxidants in dermatology, An. Bras. Dermatol., 2017, vol. 92, no. 3, pp. 356–362. https://doi.org/10.1590/abd1806-4841.20175697
Caldas, M., Cláudia Santos, A., Veigaa, F., et al., Melanin nanoparticles as a promising tool for biomedical applications – a review, Acta Biomaterialia, 2020, vol. 105, pp. 26–43. https://doi.org/10.1016/j.actbio.2020.01.044
Cavallini, C., Vitiello, G., Adinolfi, B., et al., Melanin and melanin-like hybrid materials in regenerative medicine, Nanomaterials, 2020, vol. 10, no. 8, p. 1518. https://doi.org/10.3390/nano10081518
Chen, J., Chen, Y., Chen, Y., et al., Epidermal CFTR suppresses MAPK/NF- κB to promote cutaneous wound healing, Cell. Physiol. Biochem., 2016, vol. 39, no. 6, pp. 2262–2274. https://doi.org/10.1159/000447919
Chomczynski, P. and Sacchi, N., Single-step method of RNA isolation by acid guanidinium thiocyanatephenol-chloroform extraction, Anal. Biochem., 1987, vol. 162, no. 1, pp. 156–159. https://doi.org/10.1006/abio.1987.9999
Costantini, T., Loomis, W., Putnam, J., et al., Burn-induced gut barrier injury is attenuated by phosphodiesterase inhibition: effects on tight junction structural proteins, Shock, 2009, vol. 31, pp. 416–422. https://doi.org/10.1097/SHK.0b013e3181863080
Crites, K., Morin, G., Orlando, V., et al., CFTR knockdown induces proinflammatory changes in intestinal epithelial cells, J. Inflammation, 2015, vol. 12, art. ID 62. https://doi.org/10.1186/s12950-015-0107-y
Cui, Y., Wang, X., Xue, J., et al., Chrysanthemum morifolium extract attenuates high-fat milk-induced fatty liver through peroxisome proliferator-activated receptor α–mediated mechanism in mice, Nutr. Res., 2014, vol. 34, no. 3, pp. 268–275. https://doi.org/10.1016/j.nutres.2013.12.010
De Lisle, R., Disrupted tight junctions in the small intestine of cystic fibrosis mice, Cell Tissue Res., 2014, vol. 355, pp. 131–142. https://doi.org/10.1007/s00441-013-1734-3
Dong, J., Jiang, X., Zhang, X., et al., Dynamically regulated CFTR expression and its functional role in cutaneous wound healing, J. Cell. Physiol., 2015, vol. 230, no. 9, pp. 2049–2058. https://doi.org/10.1002/jcp.24931
Dong, Z., Chen, J., Ruan, Y., et al., CFTR-regulated MAPK/NF-κB signaling in pulmonary inflammation in thermal inhalation injury, Sci. Rep., 2015, vol. 5, art. ID 15946. https://doi.org/10.1038/srep15946
Dranitsina, A., Taburets, O., Dvorshchenko, K., et al., TGFB 1, PTGS 2 genes expression during dynamics of wound healing and with the treatment of melanin, Res. J. Pharm., Biol. Chem. Sci., 2017, vol. 8, no. 1, pp. 2014–2023. https://doi.org/10.3103/S0095452718030039
Golyshkin, D., Falaleeva, T., Neporada, K., and Beregova, T., Effect of melanin on the condition of gastric mucosa and reaction of the hypothalamic-pituitary-adrenal axis under acute stress, Physiol. J., 2015, vol. 61, no. 2, pp. 65–72. https://doi.org/10.15407/fz61.02.065
Heindryckx, F., Binet, F., Ponticos, M., et al., Endoplasmic reticulum stress enhances fibrosis through IRE1α-mediated degradation of miR-150 and XBP-1 splicing, EMBO Mol. Med., 2016, vol. 8, no. 7, pp. 729–744. https://doi.org/10.15252/emmm.201505925
Hsu, H., Liu, C., Lin, J., et al., Involvement of ER stress, PI3K/AKT activation, and lung fibroblast proliferation in bleomycin-induced pulmonary fibrosis, Sci. Rep., 2017, vol. 7, no. 1, art. ID 14272. https://doi.org/10.1038/s41598-017-14612-5
Huet, À., Dvorshchenko, Ê., Taburets, Î., Grebinyk, D., Beregova, T., and Ostapchenko, L., Tlr2 and Tjp1 genes’ expression during restoration of skin integrity, Cyt. Genet., 2020, vol. 54, no. 6, pp. 539–545. https://doi.org/10.3103/S0095452720060122
Kanigur-Sultuybek, G., Yenmis, G., and Soydas, T., Functional variations of NFKB1 and NFKB1A in inflammatory disorders and their implication for therapeutic approaches, Asian Biomed., 2020, vol. 14, no. 2, pp. 47–57. https://doi.org/10.1515/abm-2020-0008
Lee, H. and Jang, Y., Recent understandings of biology, prophylaxis and treatment strategies for hypertrophic scars and keloids, Int. J. Mol. Sci., 2018, vol. 19, no. 3. https://doi.org/10.3390/ijms19030711
Li, W., Wang, C., Peng, X., et al., CFTR inhibits the invasion and growth of esophageal cancer cells by inhibiting the expression of NF-κB, Cell Biol. Int., 2018, vol. 42, no. 12, pp. 1680–1687. https://doi.org/10.1002/cbin.11069
Liu, X., Chen, Y., You, B., et al., Molecular mechanism mediating enteric bacterial translocation after severe burn: the role of cystic fibrosis transmembrane conductance regulator, Burns Trauma, 2021, vol. 9, art. ID tkaa042. https://doi.org/10.1093/burnst/tkaa042
Livak, K. and Schmittgen, T., Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT
method, Methods, 2001, vol. 25, no. 4, pp. 402–408. https://doi.org/10.1006/meth.2001.126210.1006/meth.2001.1262
Orman, M., Nguyen, T., Ierapetritou, M., et al., Comparison of the cytokine and chemokine dynamics of the early inflammatory response in models of burn injury and infection, Cytokine, 2011, vol. 55, no. 3, pp. 362–371. https://doi.org/10.1016/j.cyto.2011.05.010
Sarrazy, V., Billet, F., Micallef, L., et al., Mechanisms of pathological scarring: Role of myofibroblasts and current developments, Wound Repair Regener., 2011, vol. 19, no. s1, pp. 10–15. https://doi.org/10.1111/j.1524-475X.2011.00708.x
Stacey, A., D’Mello, N., Graeme, J., et al., Signaling pathways in melanogenesis, Int. J. Mol. Sci., 2016, vol. 17, no. 7, art. ID 1144. https://doi.org/10.3390/ijms17071144
Yang, A., Sun, Y., Mao, C., et al., Folate protects hepatocytes of hyperhomocysteinemia mice from apoptosis via cystic fibrosis transmembrane conductance regulator (CFTR)-activated endoplasmic reticulum stress, J. Cell. Biochem., 2017, vol. 118, no. 9, pp. 2921–2932. https://doi.org/10.1002/jcb.25946
Zhou, Y., Zhao, Y., Du, H., et al., Downregulation of CFTR is involved in the formation of hypertrophic scars, BioMed. Res. Int., 2020, vol. 2020, art. ID 9526289. https://doi.org/10.1155/2020/9526289