Цитологія і генетика 2020, том 54, № 6, 45-53
Cytology and Genetics 2020, том 54, № 6, 539–545, doi: https://www.doi.org/10.3103/S0095452720060122

Експресія генів Tlr2 та Tjp1 під час відновлення цілісності шкіри

Юет А.С., Дворщенко К.О., Гребіник Д.М., Табурець О.В., Берегова Т.В., Остапченко Л.І.

  • Навчально­науковий центр «Інститут біології та медицини» Київського національного університету імені Тараса Шевченка, 01601, Киев, ул. Володимирська, 64/13

Показано зниження рівня експресії гена Tjp1 при загоюванні повношарових вирізаних площинних ран шкіри щурів на тлі активування вільнорадикальних процесів (зростання вмісту супероксидного аніон-радикалу). Відновлення рівня експресії цього гена може бути опосередковано зростанням рівня експресії гена Tlr2. При застосуванні меланіну за тих самих умов рівень експресії Tjp1, як і вміст супероксидного аніон-радикалу, швидше наближався до контрольних значень за відсутності гіперекспресії гена Tlr2, під час відновлення цілісності шкіри.

РЕЗЮМЕ. Показано снижение уровня экспрессии гена Tjp1 при заживлении полнослойных вырезанных плоскостных ран кожи крыс на фоне активации свободнорадикальных процессов (увеличение содержания супероксидного анион-радикала). Восстановление уровня экспрессии этого гена может быть опосредовано ростом уровня экспрессии гена Tlr2. При применении меланина при тех же условиях уровень экспрессии Tjp1, как и содержание супероксидного анион-радикала, быстрее приближалось к контрольным значениям при отсутствии гиперэкспрессии гена Tlr2, во время восстановления целостности кожи.

Ключові слова: експресія генів Tjp1, Tlr2, повношарові вирізані площинні рани шкіри, меланін
экспрессия генов Tjp1, Tlr2, полнослойные вырезанные плоскостные раны кожи, меланин

Цитологія і генетика
2020, том 54, № 6, 45-53

Current Issue
Cytology and Genetics
2020, том 54, № 6, 539–545,
doi: 10.3103/S0095452720060122

Повний текст та додаткові матеріали

Цитована література

1. Penn, J.W., Grobbelaar, A.O., and Rolfe, K.J., The role of the TGF-? family in wound healing, burns and scarring: a review, Int. J. Burn. Trauma, 2012, vol. 2, no. 1, pp. 18–28.

2. Kuo, I.-H., Carpenter-Mendini, A., Yoshida, T., McGirt, L.Y., Ivanov, A.I., Barnes, K.C., Gallo, R.L., Borkowski, A.W., Yamasaki, K., Leung, D.Y., Georas, S.N., De Benedetto, A., and Beck, L.A., Activation of epidermal toll-like receptor 2 enhances tight junction function—implications for atopic dermatitis and skin barrier repair, J. Invest. Dermatol., 2013, vol. 133, no. 4, pp. 988–998. https://doi.org/10.1038/jid.2012.437

3. Korotkyi, O., Dvorshchenko, K., Vovk, A., Dranitsina, A., Tymoshenko, M., Kot, L., and Ostapchenko, L., Effect of probiotic composition on oxidative/antioxidant balance in blood of rats under experimental osteoarthritis, Ukr. Biochem. J., 2019, vol. 91, no. 6, pp. 49–58. https://doi.org/10.15407/ubj91.06.049

4. Wagener, F.A., Carels, C.E., and Lundvig, D.M., Targeting the redox balance in inflammatory skin conditions, Int. J. Mol. Sci., 2013, vol. 14, no. 9, pp. 126–167. https://doi.org/10.3390/ijms14059126

5. Dranitsina, A.S., Taburets, O.V., Dvorshchenko, K.O., Grebinyk, D.M., Beregova, T.V., and Ostapchenko, L.I., TGFB 1, PTGS 2 genes expression during dynamics of wound healing and with the treatment of melanin, Res. J. Pharm., Biol. Chem. Sci., 2017, vol. 8, no. 1, pp. 2014–2023. https://doi.org/10.3103/S0095452718030039

6. Addor, F.A.S., Antioxidants in dermatology, An. Bras. Dermatol. 2017, vol. 92, no. 3, pp. 356–362. https://doi.org/10.1590/abd1806-4841.20175697

7. Cario, E., Gerken, G., and Podolsky, D.K., Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C, Gastroenterology. 2004, vol. 127, pp. 224–238. https://doi.org/10.1053/j.gastro.2004.04.015

8. Yuki, T, Yoshida, H., Akazawa, Y., Komiya, A., Sugiyama, Y., and Inoue, S., Activation of TLR2 enhances tight junction barrier in epidermal keratinocytes, J. Immunol., 2011b, vol. 187, pp. 3230–3237. https://doi.org/10.4049/jimmunol.1100058

9. Rajaiah, R., Perkins, D.J., Ireland, D.D.C., and Vogel, S.N., CD14 dependence of TLR4 endocytosis and TRIF signaling displays ligand specificity and is dissociable in endotoxin tolerance, Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, pp. 8391–8396. https://doi.org/10.1073/pnas.1424980112

10. Sun, L., Liu, W., and Zhang, L.-J., The role of Toll-like receptors in skin host defense, psoriasis, and atopic dermatitis, J. Immunol. Res., 2019. https://doi.org/10.1155/2019/1824624

11. Bo Zhang, Yeong Min Choi, Junwoo Lee, In Sook An, Li Li, Congfen He, Yinmao Dong, Seung-hee Bae, and Hong Meng, Toll-like receptor 2 plays a critical role in pathogenesis of acne vulgaris, Med. Dermatol., 2019, vol. 4, pp. 1–6. https://doi.org/10.1186/s41702-019-0042-2

12. Niebuhr, M., Lutat, C., Sigel, S., and Werfel, T., Impaired TLR-2 expression and TLR-2-mediated cytokine secretion in macrophages from patients with atopic dermatitis, Allergy, 2009, vol. 64, pp. 1580–1587. https://doi.org/10.1111/j.1398-9995.2009.02050.x

13. Brandner, J.M., Kief, S., Grund, C., Rendl, M., Houdek, P., Kuhn, C., Tschachler, E., Franke, W.W., and Moll, I., Organization and formation of the tight junction system in human epidermis and cultured keratinocytes, Eur. J. Cell Biol., 2002, vol. 81, pp. 253–263. https://doi.org/10.1078/0171-9335-00244

14. Qiao X, Roth I, F?raille E, Hasler U. Different effects of ZO-1, ZO-2 and ZO-3 silencing on kidney collecting duct principal cell proliferation and adhesion, Cell Cycle, 2014, vol. 13, no. 19, pp. 3059–3075. https://doi.org/10.4161/15384101.2014.949091

15. Steed, E., Balda, M.S., and Matter, K., Dynamics and functions of tight junctions, Trends Cell Biol., 2010, vol. 20, pp. 142–149.https://doi.org/10.1016/j.tcb.2009.12.002

16. Bauer, H., Zweimueller-Mayer, J., Steinbacher, P., Lametschwandtner, A., and Bauer, H.C., The dual role of zonula occludens (ZO) proteins, J. Biomed. Biotechnol., 2010, vol. 2010, p. 402593. https://doi.org/10.1155/2010/402593

17. Stacey, A. N. D’Mello, Graeme, J. Finlay, Bruce C., Baguley, Marjan, E., Askarian-Amiri., Signal. Path. Melanog., 2016, vol. 17, no. 7, p. 1144. https://doi.org/10.3390/ijms17071144

18. El-Obeid, A., Al-Harbi, S., Al-Jomah, N., Hassib, A., Herbal melanin modulates tumor necrosis factor (TNF-alfa), interleukin 6 (IL-6) and vascular endothelial growth factor (VEGF) production, Phytomedicine, 2006, vol. 13, pp. 324–33. https://doi.org/10.1016/j.phymed.2005.03.007

19. Golyshkin, D.V., Falaleeva, T.M., Neporada, K.S., and Beregova, T.V., Effect of melanin on the condition of gastric mucosa and reaction of the hypothalamic-pituitary-adrenal axis under acute stress, Physiol. J., 2015, vol. 61, no. 2, pp. 65–72. https://doi.org/10.15407/fz61.02.065

20. Henry, S.L., Concannon, M.J., and Yee, G.J., The effect of magnetic fields on wound healing. Experimental study and review of the literature, Open Acc. J. Plast. Surg., 2008, vol. 8, pp. 393–399.

21. Bilyayeva, O., Neshta, V.V., Golub, A., and Sams-Dodd, F., Effects of sea silon wound healing in the rat, J. Wound Care, 2014, vol. 23, no. 8, pp. 140–146. https://doi.org/10.12968/jowc.2014.23.8.410

22. Schafer, M. and Werner, S., Oxidative stress in normal and impaired wound repair, Pharmacol. Res., 2008, vol. 58, pp. 165–171. https://doi.org/10.1016/j.phrs.2008.06.004

23. Sutherland, M.W. and Learmonth, B.A., The tetrazolium dyes MTS and XTT provide new quantitative assays for superoxide and superoxide dismutase, Free Radic. Res., 1997, vol. 27, no. 3, pp. 283–289. https://doi.org/10.3109/10715769709065766

24. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, vol. 193, no. 1, pp. 265–275. PubMed PMID: 14907713

25. Chomczynski, P. and Sacchi, N., Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction, Anal. Biochem., 1987, vol. 162, no. 1, pp. 156–159. https://doi.org/10.1006/abio.1987.9999

26. Lee, W.H., Sonntag, W.E., Mitschelen, M., Yan, H., and Lee, Y.W., Irradiation induces regionally specific alterations in pro-inflammatory environments in rat brain, Int. J. Radiat. Biol., 2010, vol. 280, no. 2, pp. 132–144. https://doi.org/10.3109/09553000903419346

27. Sakuma, S., Kitamura, T., Kuroda, C., Takeda, K., Nakano, S., Hamashima, T., Kohda, T., Wada, S., Arakawa, Y., and Fujimoto, Y., All-trans arachidonic acid generates reactive oxygen species via xanthine dehydrogenase/xanthine oxidase interconversion in the rat liver cytosol in vitro, J. Clin. Biochem. Nutr., 2012, vol. 51, no. 1, vol. 51, no. 1, pp. 55–60. https://doi.org/10.3164/jcbn.11-97

28. Langbein, H., Brunssen, C., Hofmann, A., Cimalla, P., Brux, M., Bornstein, S.R., Deussen, A., Koch, E., and Morawietz, H., NADPH oxidase 4 protects against development of endothelial dysfunction and atherosclerosis in LDL receptor deficient mice, Eur. Heart J., 2016, vol. 37, no. 22, pp. 1753–1761. https://doi.org/10.1093/eurheartj/ehv564

29. Guo, W., Wang, P., Liu, Z., and Ye, P., Analysis of differential expression of tight junction proteins in cultured oral epithelial cells altered by Porphyromonas gingivalis, Porphyromonas gingivalis lipopolysaccharide, and extracellular adenosine triphosphate, Int. J. Oral. Sci., 2018, vol. 10, no. 1, e8. https://doi.org/10.1038/ijos.2017.51

30. De Benedetto, A., Rafaels, N.M., McGirt, L.Y., Ivanov, A.I., Georas, S.N., Cheadle, C., Berger, A.E., Zhang, K., Vidyasagar, S., Yoshida, T., Boguniewicz, M., Hata, T., Schneider, L.C., Hanifin, J.M., Gallo, R.L., Novak, N., Weidinger, S., Beaty, T.H,, Leung, D.Y., Barnes, K.C., and Beck, L.A., Tight junction defects in patients with atopic dermatitis, J. Allerg. Clin. Immun., 2011, vol. 127, pp. 773–786, e1–e7. https://doi.org/10.1016/j.jaci.2010.10.018

31. Dickel, H., Gambichler, T., Kamphowe, J., Altmeyer, P., and Skrygan, M., Standardized tape stripping prior to patch testing induces upregulation of Hsp90, Hsp70, IL-33, TNF-alpha and IL-8/CXCL8 mRNA: new insights into the involvement of ‘alarmins’, Contact Dermatitis, 2010, vol. 63, pp. 215–222. https://doi.org/10.1111/j.1600-0536.2010.01769.x

32. Berthelot, J.-M., Sellam, J., Maugars, Y., and Berenbaum, F., Cartilage-gut-microbiome axis: a new paradigm for novel therapeutic opportunities in osteoarthritis, RMD Open, 2019, vol. 5, e001037. https://doi.org/10.1136/rmdopen-2019-001037

33. Rajaiah, R., Perkins, D.J., Ireland, D.D.C., and Vogel, S.N., CD14 dependence of TLR4 endocytosis and TRIF signaling displays ligand specificity and is dissociable in endotoxin tolerance, Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, pp. 8391–8396. https://doi.org/10.1073/pnas.1424980112

34. Dana, N., Vaseghi, G., and Javanmard, S.H., Crosstalk between peroxisome proliferator-activated receptors and Toll-like receptors: a systematic review, Adv. Pharm. Bull., 2019, vol. 9, no. 1, pp. 12–21. https://doi.org/10. 15171/apb.2019.003

35. Jin, H., Kumar, L., Mathias, C., Zurakowski, D., Oettgen, H., Gorelik, L., and Geha, R., Toll-like receptor 2 is important for the T(H)1 response to cutaneous sensitization, J. Allerg. Clin. Immun., 2009, vol. 123, no. 4, pp. 875–882. https://doi.org/10.1016/j.jaci.2009.02.007

36. Nahid, M.A., Satoh, M., and Chan, E.K., Mechanistic role of microRNA-146a in endotoxin-induced differential cross-regulation of TLR signaling, J. Immunol., 2011, vol. 186, pp. 1723–1734. https://doi.org/10.4049/jimmunol.1002311

37. Ding, Y., Wang, L., Zhao, Q., Wu, Z., and Kong, L., MicroRNA-93 inhibits chondrocyte apoptosis and inflammation in osteoarthritis by targeting the TLR4/NF-kB signaling pathway, Int. J. Mol. Med., 2019, vol. 43, no. 2, pp. 779–790. https://doi.org/10.3892/ijmm.2018.4033

38. Cui, Y., Wang, X.L., Xue, J., Liu, J.Y., and Xie, M.L., Chrysanthemum morifolium extract attenuates high-fat milk-induced fatty liver through peroxisome proliferator-activated receptor alpha-mediated mechanism in mice, Nutr. Res., 2014, vol. 34, pp. 268–275. https://doi.org/10.1016/j.nutres.2013.12.010