Цитологія і генетика 2019, том 53, № 6, 54-63
Cytology and Genetics 2019, том 53, № 6, 481–488 , doi: https://www.doi.org/10.3103/S0095452719060021

Експресія генів Nos2 та Acan у хрящях колінного суглоба щурів за умов остеоартрозу

Драницина А.С., Дворщенко К.О., Короткий О.Г., Вовк А.А., Фалалєєва Т.М., Остапченко Л.І.

Навчально-науковий центр «Інститут біології та медицини» Київського національного університету імені Тараса Шевченка, 01601, м. Киев, ул. Володимирська 64/13.

РЕЗЮМЕ. В ходе гистологического исследования нами выявлено дегенеративные изменения в хрящевой ткани крыс с индуцированным монойодоацетатом натрия остеоартрозом и оценено влияние хондроитина сульфата и мультипробиотического препарата на процессы заживления, а именно: отсутствие постнекротических изменений и фиброзных элементов при
совместном введении указанных препаратов. Молекулярный анализ хрящевой ткани крыс с экспериментальным артрозом обнаружил повышение уровня экспрессии гена Nos2 и снижение уровня экспрессии гена Acan по сравнению с контрольной группой животных, что указывает на активацию воспалительных и деструктивных процессов в ткани. При комбинированном введении хондроитина сульфата и мультипробиотика при тех же условиях паттерн экспрессии генов Nos2 и Acan возвращался к контрольным значениям, что свидетельствует о перспективности использования мультипробиоти-ка как вещества, которое усиливает противовоспалительное и антиоксидантное действие хондропротектора в условиях остеоартроза.

Під час гістологічного дослідження нами було виявлено дегенеративні зміни у хрящовій тканині щурів з індукованим монойодоацетатом натрію остеоартрозом та оцінено вплив хондроїтину сульфату та мультипробіотичного препарату на процеси загоєння, а саме: відсутність пост-некротичних змін та фіброзних елементів при сумісному введенні зазначених препаратів. Молекулярний аналіз хрящової тканини щурів з експериментальним артрозом виявив підвищення рівня експресії гена Nos2 та зниження рівня експресії гена Acan у порівнянні з контрольною групою тварин, що вказує на активацію запальних та деструктивних процесів у тканині. За комбінованого введення хондроїтину сульфату та мультипробіотика за тих самих умов патерн експресії генів Nos2 та Acan повертався до контрольних значень, що свідчить про перспективність використання мультипробіотика як речовини, яка підсилює протизапальну та антиоксидантну дію цього хондропротектора за умов остеоартрозу.

Ключові слова: хрящ, остеоартроз, крысы, экспрессия генов Nos2 и Acan, хондропротектор, мультипробиотик
хрящ, остеоартроз, щури, експресія генів Nos2 та Acan, хондропротектор, мультипробіотик

Цитологія і генетика
2019, том 53, № 6, 54-63

Current Issue
Cytology and Genetics
2019, том 53, № 6, 481–488 ,
doi: 10.3103/S0095452719060021

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

1. Dranitsina, A.S., Dvorshchenko, K.O., Grebinyk, D.M., and Ostapchenko, L.I., The impact of oxidative stress on Par2, Ptgs2 genes expression in rat duodenal epithelial cells under conditions of prolonged gastric hypochlorhydria and with administration of multiprobiotic, J. Appl. Pharmac. Sci., 2016, vol. 6, no. 12, pp. 162–169. https://doi.org/10.7324/JAPS.2016.601223

2. Abdollahi-Roodsaz, S., Abramson, S.B., and Scher, J.U., The metabolic role of the gut microbiota in health and rheumatic disease: mechanisms and interventions, Nat. Rev. Rheumatol., 2016, vol. 12, pp. 446–455. https://doi.org/10.1038/nrrheum.2016.68

3. Löfgren, M., Svala, E., Lindahl, A., Skiöldebrand, E., and Ekman, S., Time-dependent changes in gene expression induced in vitro by interleukin-1β in equine articular cartilage, Res. Vet. Sci., 2018, vol. 118, pp. 466–476. https://doi.org/10.1016/j.rvsc.2018.04.013

4. Christiansen, B.A., Bhatti, S., Goudarzi, R., and Emami, S., Management of osteoarthritis with avocado/ soybean unsaponifiables, Cartilage, 2015, vol. 6, no. 1, pp. 30–44. https://doi.org/10.1177/1947603514554992

5. Musumeci, G., Aiello, F.C., Szychlinska, M.A., Di Rosa, M., Castrogiovanni, P., and Mobasheri, A., Osteoarthritis in the XXIst century: risk factors and behaviours that influence disease onset and progression, Int. J. Mol. Sci., 2015, vol. 16, no. 3, pp. 6093–6112. https://doi.org/10.3390/ijms16036093

6. Bay-Jensen, A.C., Byrjalsen, I., Bihlet, A., Musa, K., Riis, B.J., Christiansen, C., and Karsdal, M.A., Segregating OA patients with and without joint inflammation using two biomarkers of connective tissue inflammation, Osteoarthritis Cartilage, 2015, vol. 23, pp. 88–89. https://doi.org/10.1016/j.joca.2015.02.795

7. Lepetsos, P. and Papavassiliou, A.G., ROS/oxidative stress signaling in osteoarthritis, Biochim. Biophys. Acta,Mol. Basis Dis., 2016, vol. 1862, no. 4, pp. 576–591. https://doi.org/10.1016/j.bbadis.2016.01.003

8. Stöve, J., Gerlach, C., Huch, K., Günther, K.P., Brenner, R., Puhl, W., and Scharf, H.P., Gene expression of stromelysin and aggrecan in osteoarthritic cartilage, Pathobiology, 2001, vol. 69, no. 6, pp. 333–338. https://doi.org/10.1159/000064641

9. Cancel, M., Grimard, G., Thuillard-Crisinel, D., Moldovan, F., and Villemure, I., Effects of in vivo sttic compressive loading on aggrecan and type II and X collagens in the rat growth plate extracellular matrix, Bone, 2009, vol. 44, no. 2, pp. 306–315. https://doi.org/10.1016/j.bone.2008.09.005

10. Xu, H.G., Zheng, Q., Song, J.X., Li, J., Wang, H., Liu, P., Wang, J., Wang, C.D., and Zhang, X.L., Intermittent cyclic mechanical tension promotes endplate cartilage degeneration via canonical Wnt signaling pathway and E-cadherin/β-catenin complex cross-talk, Osteoarthritis Cartilage, 2016, vol. 24, no. 1, pp. 158–168. https://doi.org/10.1016/j.joca.2015.07.019

11. Hochberg, M.C., Martel-Pelletier, J., Monfort, J., Möller, I., Castillo, J.R., Arden, N., Berenbaum, F., Blanco, F.J., Conaghan, P.G., Domenech, G., and Henrotin, Y., Combined chondroitin sulfate and glucosamine for painful knee osteoarthritis: a multicentre, randomised, double-blind, non-inferiority trial versus celecoxib, Annal. Rheumat. Dis., vol. 75, no. 1, pp. 37–44. https://doi.org/10.1136/annrheumdis-2014-206792

12. Gallagher, B., Tjoumakaris, F.P., Harwood, M.I., Good, R.P., Ciccotti, M.G., and Freedman, K.B., Chondroprotection and the prevention of osteoarthritis progression of the knee: a systematic review of treatment agents, Am. J. Sports Med., vol. 43, no. 3, pp. 734–744. https://doi.org/10.1177/0363546514533777

13. Volpi, N., Quality of different chondroitin sulfate preparations in relation to their therapeutic activity, J. Pharm. Pharmacol., 2009, vol. 61, no. 10, pp. 1271–1280. https://doi.org/10.1211/jpp.61.10.0002

14. Basu, A., Kunduru, K.R., Abtew, E., and Domb, A.J., Polysaccharide-based conjugates for biomedical applications, Bioconjugate Chem., 2015, vol. 26, no. 8, pp. 1396–1412. https://doi.org/10.1021/acs.bioconjchem.5b00242

15. Henrotin, Y., Marty, M., and Mobasheri, A., What is the current status of chondroitin sulfate and glucosamine for the treatment of knee osteoarthritis? Maturitas, 2014, vol. 78, no. 3, pp. 184–187. https://doi.org/10.1016/j.maturitas.2014.04.015

16. Largo, R., Roman-Blas, J.A., and Moreno-Rubio, J., Chondroitin sulfate improves synovitis in rabbits with chronic antigen-induced arthritis, Osteoarthritis Cartilage, 2010, vol. 18, no. 1, pp. 17–23. https://doi.org/10.1016/j.joca.2010.01.017i

17. Liu, F., Zhang, N., Li, Z., Wang, X., Shi, H., Xue, C., Li, R.W., and Tang, Q., Chondroitin sulfate disaccharides modified the structure and function of the murine gut microbiome under healthy and stressed conditions, Sci. Rep., 2017, vol. 7, no. 1, pp. 67–83. https://doi.org/10.1038/s41598-017-05860-6

18. Janssen, A.W. and Kersten, S., The role of the gut microbiota in metabolic health, FASEB J., 2015, vol. 29, no. 8, pp. 3111–3123. https://doi.org/10.1096/fj.14-269514

19. Lei, M., Guo, C., Wang, D., Zhang, C., and Hua, L., The effect of probiotic Lactobacillus casei Shirota on knee osteoarthritis: a randomised double-blind, placebo-controlled clinical trial, Benefic.Microbiol., 2017, vol. 8, no. 5, pp. 697–703. https://doi.org/10.3920/BM-2016.0207

20. Vitetta, L., Coulson, S., Linnane, A.W., and Butt, H., The gastrointestinal microbiome and musculoskeletal diseases: a beneficial role for probiotics and prebiotics, Pathogens, 2013, vol. 2, no. 4, pp. 606–626. https://doi.org/10.3390/pathogens2040606

21. Steves, C.J., Bird, S., Williams, F.M., and Spector, T.D., The microbiome and musculoskeletal conditions of aging: a review of evidence for impact and potential therapeutics, J. Bone Mineral Res., 2016, vol. 31, no. 2, pp. 261–269. https://doi.org/10.1002/jbmr.2765

22. Iankovsky, D., Shirobokov, V., and Dyment, G., Microbiome, Kyiv: BC-Book, 2017.

23. Jacobs, B.Y., Dunnigan, K., Pires-Fernandes, M., and Allen, K.D., Unique spatiotemporal and dynamic gait compensations in the rat monoiodoacetate injection and medial meniscus transection models of knee osteoarthritis, Osteoarthritis Cartilage, 2017, vol. 25, no. 5, pp. 750–8.

24. Lily, R., Histopathological Technique and Practical Histochemistry, Moscow: Mir, 1969.

25. Chomczynski, P. and Sacchi, N., The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on, Nat. Protoc., 2006, vol. 1, no. 2, pp. 581–585. https://doi.org/10.1038/nprot.2006.83

26. Livak, E.J. and Schmittgen, T.D., Analysis of relative gene expression data using real time quantitative PCR and the 2–ΔΔCt method, Methods, 2001, vol. 25, pp. 402–408. https://doi.org/10.1006/meth.2001.1262

27. Kozhemyakina, E., Lassar, A.B., and Zelzer, E., A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation, Development, 2015, vol. 142, no. 5, pp. 817–831. https://doi.org/10.1242/dev.105536

28. Dranitsina, A.S., Dvorshchenko, K.O., Korotkiy, A.G., Grebinyk, D.M., and Ostapchenko, L.I., Expression of Ptgs2 and Tgfb1 genes in rat cartilage cells of the knee under conditions of osteoarthritis, Cytol. Genet., 2018, vol. 52, no. 3, pp. 192–197. https://doi.org/10.3103/S0095452718030039

29. Kamata, H. and Hirata, H., Redox regulation of cellular signalling, Cell. Signal., 1999, vol. 11, pp. 1–14. https://doi.org/10.1016/S0898-6568(98)00037-0

30. Robinson, W.H., Lepus, C.M., Wang, Q., Raghu, H., Mao, R., Lindstrom, T.M., and Sokolove, J., Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis, Nat. Rev. Rheumatol., 2016, vol. 12, no. 10, pp. 580–592. https://doi.org/10.1038/nrrheum.2016.136

31. Chan, P.S., Caron, J.P., Rosa, G.J., and Orth, M.W., Glucosamine and chondroitin sulfate regulate gene expression and synthesis of nitric oxide and prostaglandin E(2) in articular cartilage explants, Osteoarthritis Cartilage, 2005, vol. 13, no. 5, pp. 387–394. https://doi.org/10.1016/j.joca.2005.01.003

32. Stabler, T.V., Huang, Z., Montell, E., Verges, J., and Kraus, V.B., Chondroitin sulphate inhibits NF-ĸB activity induced by interaction of pathogenic and damage associated molecules, Osteoarthritis Cartilage, 2017, vol. 25, no. 1, pp.166–174. https://doi.org/10.1016/j.joca.2016.08.012

33. Shang, Q., Shi, J., Song, G., Zhang, M., Cai, C., Hao, J., Li, G., and Yu, G., Structural modulation of gut microbiota by chondroitin sulfate and its oligosaccharide, Int. J. Biol. Macromol., 2016, vol. 89, pp. 489–498.

34. Opoka-Winiarska, V., Jurecka, A., Emeryk, A., and Tylki-Szymanska, A., Osteoimmunology in mucopolysaccharidoses type I, II, VI and VII. Immunological regulation of the osteoarticular system in the course of metabolic inflammation, Osteoarthritis Cartilage, 2013, vol. 21, pp. 1813–1823. https://doi.org/10.1016/j.joca.2013.08.001

35. Amdekar, S., Singh, V., Kumar, A., Sharma, P., and Singh, R., Lactobacillus casei and Lactobacillus acidophilus regulate inflammatory pathway and improve antioxidant status in collagen-induced arthritic rats, J. Interfer. Cytok. Res., 2013, vol. 33, no. 1, pp. 1–8. https://doi.org/10.1089/jir.2012.0034

36. Dranitsina, A.S., Savko, U.V., Dvorshchenko, K.O., and Ostapchenko, L.I., Expression of Gast, Cckbr, Reg1a genes in rat duodenal epithelial cells upon long-term gastric hypoacidity and with administration of multiprobiotic, Biopol. Cell, 2014, vol. 30, no. 5, pp. 365–371. https://doi.org/10.7124/bc.0008B3