Цитологія і генетика 2019, том 53, № 3, 25-37
Cytology and Genetics 2019, том 53, № 3, 202–211, doi: https://www.doi.org/10.3103/S0095452719030046

Кариологическое исследование сибирских видов лиственниц Larix sibirica и Larix gmelinii на Таймыре

Седельникова Т.С., Пименов А.В.

  • Институт леса им. В.Н. Сукачева СО РАН, Федеральный исследовательский центр «Красноярский научный центр СО РАН», Красноярск, Россия

Выполнено сравнительное исследование кариотипов двух сибирских видов лиственниц – L. sibirica и L. gmelinii, произрастающих в зоне лесотундры на полуострове Таймыр. Проведен анализ числа хромосом и показано возрастание хромосомной нестабильности у лиственниц в условиях лесотундры. Проведена оценка размеров и морфологии хромосом, локализации и частоты встречаемости вторичных перетяжек в хромосомах L. sibirica и L. gmelinii. Изучены параметры хромосом в полиплоидных клетках L. gmelinii. Проведен анализ асимметрии кариотипов L. sibirica и L. gmelinii. Исследованы спектр и частота встречаемости хромосомных перестроек у L. sibirica и L. gmelinii. С привлечением данных кариологического анализа обсуждаются вопросы дифференциации и адаптации исследованных видов лиственниц на территории Таймыра.

РЕЗЮМЕ. Виконано порівняльне дослідження кариотипів двох
сибірських видів модрин – L. sibirica і L. gmelinii, які ростуть в зоні лісотундри на півострові Таймир. Проведено аналіз числа хромосом і показано зростання хромосомної нестабільності у модрин в умовах лісотундри. Проведено оцінку розмірів і морфології хромосом, локалізації та частоти виникнення вторинних перетяжок в хромосомах L. sibirica і L. gmelinii. Вивчено параметри хромосом в поліплоїдних клітинах L. gmelinii. Проведено аналіз асиметрії кариотипів L. sibirica і L. gmelinii. Досліджено спектр та частоту народження хромосомних перебудов у L. sibirica і L. gmelinii. Із залученням даних каріологічного аналізу обговорюються питання диференціації та адаптації досліджених видів модрин на території Таймиру.

Ключові слова: полуостров Таймыр, Larix sibirica, Larix gmelinii, кариологический анализ, асимметрия кариотипов, хромосомные перестройки

Цитологія і генетика
2019, том 53, № 3, 25-37

Current Issue
Cytology and Genetics
2019, том 53, № 3, 202–211,
doi: 10.3103/S0095452719030046

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

1. Bobrov, E.G., Forest-Forming Coniferous USSR, Leningrad: Nauka, 1978.

2. Koropachinskiy, I.Yu. and Milyutin, L.I., Natural hybridization of woody plants, Novosibirsk: Academic Publishing House Geo, 2006.

3. Dylis, N.V., Siberian Larch, Sukachev, V.N., Ed., Moscow: Publ. House of the Moscow Society of Naturalists, 1947.

4. Putenikhin, V.P., Farukshina, G.G., and Shigapov, Z.Kh., Sukachev’s Larch in the Urals: Variability and Population-Genetic Structure, Moscow: Nauka, 2004.

5. Milyutin, L.I., Biodiversity of larch of Russia, Khvoin. Boreal. Zony. Larch, 2003, no. 1, pp. 6–9.

6. Semerikov, V.L. and Lascoux, M., Nuclear and cytoplasmic variation within and between Eurasian Larix (Pinaceae) species, Am. J. Bot., 2003, vol. 90, pp. 1113–1123. https://doi.org/10.3732/ajb.90.8.1113

7. Farjon, A., World Checklist and Bibliography of Conifers, Kew: The Royal Botanic Garden, 2001.

8. Dylis, N.V., Larch of Siberia and the Far East, Moscow, 1961.

9. Abaimov, A.P., Karpel, B.A., and Koropachinsky, I.Yu., On the limits of areas of Siberian larch species, Bot. Zh., 1980, vol. 65, no. 1, pp. 118–120.

10. Polezhaeva, M.A., Lascoux, M., and Semerikov, V.L., Cytoplasmic DNA variation and biogeography of Larix Mill. in Northern Asia, Mol. Ecol., 2010, vol. 19, pp. 1239–1252. https://doi.org/10.1111/j.1365-294X.2010.04552.x

11. Oreshkova, N.V., Belokon, M.M., and Jamiyansuren, S., Genetic diversity, population structure, and differentiation of Siberian larch, Gmelin larch, and Cajander larch on SSR-marker data, Russ. J. Gen. Genet., 2013, vol. 49, no. 2, pp. 178–186. https://doi.org/10.1134/S1022795412120095

12. Kruklis, M.V. and Milyutin, L.I., Larch of Chekanovsky, Moscow: Nauka, 1977.

13. Efremov, S.P., Sedelnikova, T.S., and Pimenov, A.V., Morphological features of cones of Siberian larch in wetland and dry land conditions, Khvoin. Boreal. Zony, 2006, vol. 23, no. 2, pp. 223–227.

14. Barchenkov, A.P., Intraspecific variability of the Siberian Larch Larix sibirica Ledeb. seed scales, Sib. Lesn. Zh., 2016, no. 6, pp. 126–132. https://doi.org/10.15372/SJFS20160612

15. Oreshkova, N.V., Larionova, A.Ya., Milyutin, L.I., and Abaimov, A.P., Genetic diversity, structure and differentiation of Gmelin larch (Larix gmelinii (Rupr.) Rupr.) populations from central Evenkia and Eastern Zabaikalje, Eurasian J. Forest Res., 2006, vol. 9, no. 1, pp. 1–8.

16. Semerikov, V.L., Semerikova, S.A., Polezhaeva, M.A., Kosintsev, P.A., and Lascoux, M., Southern montane populations did not contribute to the recolonization of West Siberian plain by Siberian larch (Larix sibirica): a range-wide analysis of cytoplasmic markers, Mol. Ecol., 2013, vol. 22, no. 19, pp. 4958–71. https://doi.org/10.1111/mec.12433

17. Kruse, S., Epp, L.S., Wieczorec, M., Pestryakova, L.A., Stoof-Leichsenring, K.R., and Herzscuh, U., High gene flow and complex treeline dynamics of Larix Mill. stands on the Taymyr Peninsula (north-central Siberia) revealed by nuclear microsatellites, Tree Genet. Genom., 2018, vol. 14, no. 19. https://doi.org/10.1007/s11295-018-1235-3

18. Larch Biodiversity of Asian Russia, Yefremov, S.P. and Milyutin, L.I., Eds., Novosibirsk: Academic Publishing House Geo, 2010.

19. Vetrova, V.P., Oreshkova, N.V., and Sinelnikova, N.V., Differentiation of Larix cajanderi (Pinaceae) populations on cone scales morphology and DNAmarkers in the east of the range, Bot. Zh., 2016, vol. 101, no. 9, pp. 993–1007.

20. Muratova, E.N. and Chubukina, N.E., Karyological study of Sukachev’s larch (Larix sukaczewii N. Dyl.): nucleolar regions and structural rearrangements, Tsitol. Genet., 1985, vol. 19, no. 6, pp. 419–425.

21. Muratova, E.N., Karyological study of Larix sibirica (Pinaceae) in various parts of the range, Bot. Zh., 1991, vol. 76, no. 11, pp. 1586–1595.

22. Muratova, E.N., Chromosomal polymorphism in natural populations of Gmelin larch Larix gmelinii (Rupr.) Rupr., Tsitol. Genet., 1994, vol. 28, no. 4, pp. 14–22.

23. Sedelnikova, T.S. and Pimenov, A.V., Karyological study of bog and dry-valley populations of Larix sibirica (Pinaceae) from Western Siberia, Bot. Zh., 2005, vol. 90, no. 4, pp. 582–593.

24. Sedelnikova, T.S. and Pimenov, A.V., Chromosomal mutations in Siberian larch (Larix sibirica Ledeb.) on Taimyr Peninsula, Biol. Bull., 2007, vol. 34, no. 2, pp. 198–201. https://doi.org/10.1134/s1062359007020136

25. Muratova, E.N., Karpyuk, T.V., Vladimirova, O.S., Sizykh, O.A., and Kvitko, O.V., A cytological study of Siberian larch in anthropogenically disturbed areas of the city of Krasnoyarsk and its vicinity, Vestn. Ekol. Lesoved. Landshaftoved., 2008, no. 9, pp. 99–108.

26. Kvitko, O.V., Muratova, E.N., Syzikh, O.A., and Vladimirova, O.S., Chromosome numbers of some conifer species, Bot. Zh., 2009, vol. 94, no. 2, pp. 305–307.

27. Reference Book on the Climate of the USSR, vol. 21: Krasnoyarsk Territory and Tuva ASSR, Leningrad: Gidrometeoizdat, 1973.

28. State Report “On the State and Protection of the Environment in the Krasnoyarsk Territory in 2016,” Krasnoyarsk, 2017, pp. 157–164.

29. Kirdyanov, A.V., Myglan, V.S., Pimenov, A.V., Knorre, A.A., Ekart, A.K., and Vaganov, E.A., Die-off dynamics of Siberian larch under the impact of pollutants emitted by Norilsk enterprises, Contemp. Probl. Ecol., 2014, vol. 7, no. 6, pp. 679–684. https://doi.org/10.1134/s1995425514060055

30. Lima-de-Faria, A., Classification of genes, rearrangements and chromosomes according to the chromosome field, Hereditas, 1980, vol. 93, pp. 1–46.

31. Levan, A., Fredga, K., and Sandberg, A.A., Nomenclature for centromeric position on chromosomes, Hereditas, 1964, vol. 52, pp. 201–20.

32. Stebbins, G.L., Chromosomal Evolution in Higher Plants, London: Edward Arnold Publ. Ltd., 1971.

33. Peruzzi, L. and Eroglu, H.E., Karyotype asymmetry: again, how to measure and what to measure, Comp. Cytogenet., 2013, vol. 7, no. 1, pp. 1–9. https://doi.org/10.3897/CompCytogen.v7i1.4431

34. Huziwara, Y., Karyotype analysis in some genera of Compositae. VIII. Further studies on the chromosome of Aster, Am. J. Bot., 1962, vol. 49, pp. 116–119.

35. Arano, H. and Saito, H., Cytological studies in family Umbelliferae. 5. Karyotypes of seven species in subtribe Seselinae, La Kromosomo, 1980, vol. 2, pp. 471–480.

36. Baeza, C., Schrader, E., Ruiz, E., and Negritto, M., Analisis comparativo del cariotipo en poblaciones de Alstroemeria aurea R. Graham. (Alstroemeriaceae) de Chile, Gayana Bot., 2007, vol. 64, pp. 33–39. https://doi.org/10.1590/s1415-47572010005000012

37. Romero Zarco, C., A new method for estimating karyotype asymmetry, Taxon, 1986, vol. 35, pp. 526–530.

38. Sedelnikova, T.S. and Pimenov, A.V., Chromosome numbers of Larix sibirica (Pinaceae) forms in the Shira steppe of the Republic of Khakassia, Bot. Zh., 2017, vol. 102, no. 5, pp. 693–697.

39. Sedelnikova, T.S. and Pimenov, A.V., Chromosome numbers of Larix (Pinaceae) species in forest–steppe and forest–tundra of Middle Siberia, Bot. Zh., 2017, vol. 102, no. 12, pp. 1694–7.

40. Zhang, S.-G., Yang, W.H., Han, S.Y., Han, B.T., Li, M.X., and Qi, L.W., Cytogenetic analysis of reciprocal hybrids and their parents between Larix leptolepis and Larix gmelinii: implications for identifying hybrids, Tree Genet. Genom., 2010, no. 6, pp. 405–412. https://doi.org/10.1007/s11295-009-0258-1

41. Goryachkina, O.V., Badaeva, E.D., Muratova, E.N., and Zelenin, A.V., Molecular cytogenetic analysis of Siberian Larix species by fluorescence in situ hybridization, Plant Syst. Evol., 2013, vol. 299, pp. 471–479. https://doi.org/10.1007/s00606-012-0737-y

42. Larsen, S. and Westergaard, M., Contribution to the cytogenetics of forest trees. I. A triploid hybrid between Larix decidua Miller and Larix occidentalis Nutt, J. Genet., 1938, vol. 3, pp. 523–530.

43. Illies, Z.M., Two aneuploid generations of larch hybrids deriving from colchicine induced Larix sp., in Second World Consult. on Forest Tree Breeding, Washington, August 7–16, 1969, pp. 6–10.

44. Butorina, A.K., Deryuzhkin, R.I., Muraia, L.S., Sivo-lapov, A.I., and Idjomah, J., Cytological features of heterotic larch, Lesovedenie, 1987, no. 4, pp. 82–86.

45. Kunakh, V.A., Ontogenetic plasticity of the genome as the basis of plant adaptability, in Zhebrakovsky Readings. III. “Transformation of Genomes,” Minsk: Inst. Genet. Cytol., Natl. Acad. Sci. Belarus, 2011.

46. Brochmann, C., Brysting, A.K., Alsos, I.G., Borgen, L., Grundt, H.H., Scheen, A.-C., and Elven, R., Polyploidy in arctic plants, Biol. J. Linn. Soc., 2004, vol. 82, pp. 521–536. https://doi.org/10.1111/j.1095-8312.2004.00337.x

47. Parnikoza, I., Kozeretska, I., and Kunakh, V., Vascular plants of the Maritime Antarctic: origin and adaptation, Am. J. Pl. Sci., 2011, vol. 2, no. 3, pp. 381–395. https://doi.org/10.4236/ajps.2011.23044

48. Navrotska, D.O., Twardovska, M.O., Andreev, I.O., Parnikoza, I.Yu., Betekhtin, A.A., Zahrychuk, O.M., Drobyk, N.M., Hasterok, R., and Kunakh, V.A., New forms of chromosome polymorphism in Deschampsia antarctica Desv. from the Argentine Islands of the Maritime Antarctic region, Ukr. Antarkt. Zh., 2014, no. 13, pp. 185–191. http://nbuv.gov.ua/UJRN/uazh_2014_13_20

49. Ahuja, M.R., Polyploidy in gymnosperms: revisited, Silvae Genet., 2005, vol. 54, no. 2, pp. 59–69. https://doi.org/10.1515/sg-2005-0010

50. Hizume, M., Tominaga, K., Kondo, K., Gu, Z., and Yue, Z., Fluorescent chromosome banding in six taxa of Eurasian Larix, Pinaceae, Kromosomo II, 1993, vol. 69, pp. 2342–2354.

51. Hizume, M., Kuzukawa, Y., Kondo, K., Yang, Q., Hong, D., and Tanaka, R., Localization of rDNAs and fluorescent bandings in chromosomes of Larix potaninii var. macrocarpa collected in Sichuan, China, Kromosomo II, 1995, vol. 78, pp. 2689–2694.

52. Liu, B., Zhang, S.-G., Zhang, Y., Lan, T.-Y., Qi, L.-W., and Song, W.-Q., Molecular cytogenetic analysis of four Larix species by bicolor fluorescence in situ hybridization and DAPI banding, Int. J. Plant Sci., 2006, vol. 67, no. 2, pp. 367–372. https://doi.org/10.1007/s11295-009-0258-1

53. Ahuja, M.R. and Neale, D., Evolution of genome size in conifers, Silvae Genet., 2005, vol. 54, no. 3, pp. 126–137. https://doi.org/10.1515/sg-2005-0020

54. Nkongolo, K.K. and Mehes-Smith, M., Karyotype evolution in the Pinaceae: implication with molecular phylogeny, Genome, 2012, vol. 55, no. 10, pp. 735–753. https://doi.org/10.1139/g2012-061

55. Peruzzi, L., Leitch, I.J., and Caparelli, K.F., Chromosome diversity and evolution in Liliaceae, Ann. Bot. (Lond.), 2009, vol. 103, no. 3, pp. 459–475. https://doi.org/10.1093/aob/mcn230

56. Mathew, P.M., Mathew, P.J., Christopher, C., and Haridas, P., Karyomorphological studies in conifers, J. Cytol. Genet., 2014, vol. 15 (NS), pp. 107–121.

57. Murray, B.G., Karyotype variation and evolution in Gymnosperms, Plant Genome Diversity, 2013, vol. 2, pp. 231–243. https://doi.org/10.1007/978-3-7091-1160-4_14

58. Eckenwalder, J.E., Conifers of the World, OR, Portland: Timber Press, 2009.

59. Rodionov, A.V., Polyploidy and interspecific hybridization in the evolution of flowering plants, Vavilov. Zh. Genet. Selekts., 2013, vol. 17, nos. 4/2, pp. 916–929.

60. Kalashnik, N.A., Chromosome aberrations as indicator of estimation of degree of technogenic effect on conifer plantations, Russ. J. Ecol., 2008, no. 4, pp. 276–286.