ISSN 0564-3783  
Main page
Contacts
Preview papers  
Contents  
Themes
Subscription
Information to authors
Editorial board
Standard version



In Ukrainian

Export citations   UNIMARC   BibTeX   RIS


Level of polymorphism and population differentiation of Iris pumila L. according to three types of PCR-markers

Bublyk O., Parnikoza I., Kunakh V.

 




SUMMARY. The genetic polymorphism in Iris pumila L., a rare ornamental species involved in hybridization, was stu-died with PCR analysis using three types of primers: the first group was based on microsatellite repeats (ISSR), the second was complementary to the sequences of transposable elements (IRAP and iPBS), and the third to the genes of abiotic stress response (LP-PCR). The high levels of intraspecific and intrapopulation genetic polymorphism were revealed for I. pumila, whose indices appeared to be comparable to other species of this genus. The main indices of genetic polymorphism were determined for five populations of I. pumila from the territory of Ukraine: the percentage of polymorphic loci (P) was 26,568,5 %, Shannon index (S) was 0.1050,285, and gene diversity (H) was 0,0690,190. ISSR-analysis demonstrated the direct relationship between the level of variation and the size of population, whereas two other types of markers showed the negative correlation between these indices. The direct relationship between genetic and geographic distances between populations was found only using ISSR-markers. The highest level of genetic polymorphism was detected by LP-PCR-markers, while the population assignment of all the individual plants was possible only with ISSR-markers. The developed system of PCR-based markers can be used to monitor the gene pool further on, and to study the genetic structure of populations and migration.

Key words: Iris pumila L., rare species, PCR analysis, genetic polymorphism, population genetic structure

Tsitologiya i Genetika 2021, vol. 55, no. 1, pp. 42-54

  1. Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03143, Kyiv, Ukraine
  2. National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, 01601, Kyiv, Ukraine

E-mail: o.m.bublyk imbg.org.ua, ivan.parnikoza uac.gov.ua, kunakh imbg.org

Bublyk O., Parnikoza I., Kunakh V. Level of polymorphism and population differentiation of Iris pumila L. according to three types of PCR-markers, Tsitol Genet., 2021, vol. 55, no. 1, pp. 42-54.

In "Cytology and Genetics":
O. Bublyk, I. Parnikoza & V. Kunakh Assessing the Levels of Polymorphism and Differentiation in Iris pumila L. Populations Using Three Types of PCR Markers, Cytol Genet., 2021, vol. 55, no. 1, pp. 3646
DOI: 10.3103/S0095452721010047


References

1. Allendorf, F.W., Genetics and the conservation of natural populations: allozymes to genomes, Mol. Ecol., 2017, vol. 26, pp. 420430. https://doi.org/10.1111/mec.13948

2. Antao, T. and Beaumont, M.A., Mcheza: a workbench to detect selection using dominant markers, Bioinformatics, 2011, vol. 27, no. 12, pp. 17171718. https://doi.org/10.1093/bioinformatics/btr253

3. Biswas, M.K., Xu, Q., and Deng, X., Utility of RAPD, ISSR, IRAP and REMAP markers for the genetic ana-lysis of Citrus spp., Sci. Hortic., 2010, vol. 124, no. 2, pp. 254261. https://doi.org/10.1016/j.scienta.2009.12.013

4. Bothwell, H., Bisbing, S., Therkildsen, N.O., et al., Identifying genetic signatures of selection in a non-model species, alpine gentian (Gentiana nivalis L.), using a landscape genetic approach, Conserv. Genet., 2013, vol. 14, pp. 467481. https://doi.org/10.1007/s10592-012-0411-5

5. Bublyk, O.M., Andreev, I.O., Kalendar, R.N., et at., Efficiency of different PCR-based marker systems for assessment of Iris pumila genetic diversity, Biologia, 2013, vol. 68, no. 4, pp. 613620. https://doi.org/10.2478/s11756-013-0192-4

6. Bublyk, O., Andreev, I., Parnikoza, I., and Kunakh, V., Population genetic structure of Iris pumila L. in Ukraine: effects of habitat fragmentation, Acta Biol. Cracov. Bot., 2020, vol. 62, no. 1, pp. 5161. https://doi.org/10.24425/abcsb.2020.131665

7. Chen, J., Huang, C., Lai, Y., et al., Postglacial range expansion and the role of ecological factors in driving adaptive evolution of Musa basjoo var. formosana, Sci. Rep., 2017, vol. 7, p. 5341. https://doi.org/10.1038/s41598-017-05256-6

8. Chuanliang, D., Jian, Zh., Longdou, L., et al., Study on germplasmic resources of Lycoris longituba using RAPD and ISSR, Analele Universitatii Alexandru Ioan Cuza, Seria Genetica si Biologie Moleculara, 2006, vol. VII, pp. 111120.

9. Clo, J., Gay, L., and Ronfort, J., How does selfing affect the genetic variance of quantitative traits? An updated meta-analysis on empirical results in angiosperm species, Evolution, 2019, vol. 73, no. 8, pp. 15781590. https://doi.org/10.1111/evo.13789

10. Dembicz, I., Szczeparska, L., Moysiyenko, I.I., and Wodkiewicz, M., High genetic diversity in fragmented Iris pumila L. populations in Ukrainian steppe enclaves, Basic Appl. Ecol., 2018, vol. 28, pp. 3747. https://doi.org/10.1016/j.baae.2018.02.009

11. DOnofrio, C., De Lorenzis, G., Giordani, T., et al., Retrotransposon-based molecular markers for grapevine species and cultivars identification, Tree Genet. Genom., 2010, vol. 6, pp. 451466. https://doi.org/10.1007/s11295-009-0263-4

12. Doyle, J.J. and Doyle, J.L., A rapid DNA isolation procedure for small quantities of fresh leaf tissue, Phytochem. Bull., 1987, vol. 19, pp. 1115.

13. Ellegren, H. and Galtier, N., Determinants of genetic diversity, Nat. Rev. Genet., Nature Publ. Group, 2016, vol. 17, no. 7, pp. 422433. https://doi.org/10.1038/nrg.2016.58

14. Felsenstein, J., PHYLIPPhylogeny Inference Package (version 3.2), Cladistics, 1989, vol. 5, pp. 164166.

15. Flanagan, S.P., Forester, B.R., Latch, E., et al., Guidelines for planning genomic assessment and monitoring of locally adaptive variation to inform species conservation, Evol. Appl., 2018, vol. 11, no. 7, pp. 10351052.https://doi.org/10.1111/eva.12569

16. Frankham, R., Ballou, J.D., Ralls, K., et al., Genetic Management of Fragmented Animal and Plant Populations, Oxford, UK: Oxford Univ. Press, 2017. https://doi.org/10.1093/oso/9780198783398.001.0001

17. Garrido-Cardenas, J.A., Mesa-Valle, C., and Manzano-Agugliaro, F., Trends in plant research using molecular markers, Planta, 2018, vol. 247, pp. 543557. https://doi.org/10.1007/s00425-017-2829-y

18. Glémin, S., Francois, C.M., and Galtier, N., Genome evolution in outcrossing vs. selfing vs. asexual species, in Evolutionary Genomics, Anisimova, M., Ed., Methods Mol. Biol., New York, NY: Humana, 2019, vol. 1910. https://doi.org/10.1007/978-1-4939-9074-011

19. Gupta, P.K. and Rustgi, S., Molecular markers from the transcribed/expressed region of the genome in higher plants, Funct. Integr. Genom., 2004, vol. 4, pp. 139162. https://doi.org/10.1007/s10142-004-0107-0

20. Hanson, J.O., Rhodes, J.R., Riginos, C., and Fuller, R.A., Environmental and geographic variables are effective surrogates for genetic variation in conservation planning, Proc. Natl. Acad. Sci. U. S. A., 2017, vol. 114, no. 48, pp. 1275512760. https://doi.org/10.1073/pnas.1711009114

21. Holderegger, R., Balkenhol, N., Bolliger, J., et al., Conservation genetics: linking science with practice, Mol. Ecol., 2019, vol. 28, pp. 38483856. https://doi.org/10.1111/mec.15202

22. Kalendar, R., Antonius, K., Smykal, P., and Schulman, A.H., iPBS: a universal method for DNA fingerprinting and retrotransposon isolation, Theor. Appl. Genet., 2010, vol. 121, no. 8, pp. 14191430. https://doi.org/10.1007/s00122-010-1398-2

23. Kalendar, R., Amenov, A., and Daniyarov, A., Use of retrotransposon-derived genetic markers to analyse genomic variability in plants, Funct. Plant Biol., 2018, vol. 46, pp. 1529. https://doi.org/10.1071/FP18098

24. Kawecki, T.J., Adaptation to marginal habitats, Ann. Rev. Ecol. Evol., 2008, vol. 39, pp. 321342. https://doi.org/10.1146/annurev.ecolsys.38.091206.095622

25. Kozyrenko, M.M., Artyukova, E.V., and Zhuravlev, Yu.N., Independent species status of Iris vorobievii N.S. Pavlova, Iris mandshurica Maxim., and Iris humilis Georgi (Iridaceae): evidence from the nuclear and chloroplast genomes, Russ. J. Genet., 2009, vol. 45, no. 11, pp. 13941402. https://doi.org/10.1134/S1022795409110143

26. Liviero, L., Maestri, E., Gulli, M., et al., Ecogeographic adaptation and genetic variation in wild barley, application of molecular markers targeted to environmentally regulated genes, Genet. Res. Crop. Ev., 2002, vol. 49, no. 2, pp. 133144. https://doi.org/10.1023/A:1014792509087

27. Mahmud, R., Kabir, M.R., Hoque, E., and Akhond, A.Y., Assessment of some genetic attributes in wheat (Triticum aestivum L.) using gene-specific molecular markers, Agric. Nat. Res., 2018, vol. 52, pp. 3944. https://doi.org/10.1016/j.anres.2018.05.003

28. Mantel, N., The detection of disease clustering and a generalized regression approach, Cancer Res., 1967, vol. 27, no. 2, pp. 209220.

29. Pakhrou, O., Medraoui, L., Yatrib, C., et al., Assessment of genetic diversity and population structure of an endemic Moroccan tree (Argania spinosa L.) based in IRAP and ISSR markers and implications for conservation, Physiol. Mol. Biol. Plants, 2017, vol. 23, pp. 651661. https://doi.org/10.1007/s12298-017-0446-7

30. Pannell, J.R. and Voillemot, M., Evolution and ecology of plant mating systems, eLS, Chichester: Wiley, 2017. https://doi.org/10.1002/9780470015902.a0021909.pub2

31. Parnikoza, I., Andreev, I., Bublyk, O., et al., The current state of steppe perennial plants populations: a case study on Iris pumila, Biologia, 2017, vol. 72, no. 1, pp. 2435. https://doi.org/10.1515/biolog-2017-0002

32. Peakall, R. and Smouse, P.E., GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research, Mol. Ecol. Notes, 2006, vol. 6, pp. 288295. https://doi.org/10.1111/j.1471-8286.2005.01155.x

33. Pritchard, J.K., Stephans, M., and Donnelly, P., Inference of population structure using multilocus genotype data, Genetics, 2000, vol. 155, pp. 945959.

34. Rodriguez-Quilon, I., Santos-del-Blanco, L., Serra-Varela, M.J., et al., Capturing neutral and adaptive genetic diversity for conservation in a highly structured tree species, Ecol. Appl., 2016, vol. 26, pp. 22542266. https://doi.org/10.1002/eap.1361

35. Ruan, Y., Huang, B.-H., Lai, Sh.-J., et al., Population genetic structure, local adaptation, and conservation genetics of Kandelia obovata, Tree Genet. Genom., 2013, vol. 9, pp. 913925. https://doi.org/10.1007/s11295-013-0605-0

36. Safriel, N.U., Volis, S., and Kark, S., Core and peripheral populations and global climate change, Isr. J. Plant Sci., 1994, vol. 42, pp. 331345. https://doi.org/10.1080/07929978.1994.10676584

37. Schluter, P.M. and Harris, S.A., Analysis of multilocus fingerprinting data sets containing missing data, Mol. Ecol. Notes, 2006, vol. 6, no. 2, pp. 569572. https://doi.org/10.1111/j.1471-8286.2006.01225.x

38. Shirmohammadli, S., Sabouri, H., Ahangar, L., et al., Genetic diversity and association analysis of rice genotypes for grain physical quality using iPBS, IRAP, and ISSR markers, J. Genet. Resour., 2018, vol. 4, pp. 122129. https://doi.org/10.22080/jgr.2019.15415.1115

39. Soumaya, Rh.-Ch., Sarra, Ch., Maha, M., et al., Gene-targeted markers to assess genetic diversity and population structure within Tunisian Phoenix dactylifera L. cultivars, Silvae Genet., 2020, vol. 69, no. 1. https://doi.org/10.2478/sg-2020-0005

40. Tessier, C., David, J., This, P., et al., Optimization of the choice of molecular markers for varietal identification in Vitis vinifera L., Theor. Appl. Genet., 1999, vol. 98, pp. 171177. https://doi.org/10.1007/s001220051054

41. Wang, K., Kang, J., Zhou, H., et al., Genetic diversity of Iris lactea var. chinensis germplasm detected by inter-simple sequence repeat (ISSR), Afr. J. Biotechnol., 2009, vol. 8, no. 19, pp. 48564863.

42. Wroblewska, A. and Brzosko, E., The genetic structure of the steppe plant Iris aphylla L. at the northern limit of its geographical range, Bot. J. Linn. Soc., 2006, vol. 152, no. 2, pp. 245255. https://doi.org/10.1111/j.1095-8339.2006. 00568.x

43. Yang, A.-H., Wei, N., Fritsch, P.W., and Yao, X.-H., AFLP genome scanning reveals divergent selection in natural populations of Liriodendron chinense (Magnoliaceae) along a latitudinal transect, Front. Plant Sci., 2016. https://doi.org/10.3389/fpls.2016.00698

44. Zhang, Y., Zhang, X., Chen, X., et al., Genetic diversity and structure of tea plant in Qinba area in China by three types of molecular markers, Hereditas, 2018, vol. 155, no. 22. https://doi.org/10.1186/s41065-018-0058-4

45. Zietkiewicz, E., Rafalski, A., and Labuda, D., Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification, Genomics, 1994, vol. 20, no. 2, pp. 176183. https://doi.org/10.1006/geno.1994. 1151

Copyright© ICBGE 2002-2021 Coded & Designed by Volodymyr Duplij Modified 17.10.21