TSitologiya i Genetika 2025, vol. 59, no. 2, 94-97
Cytology and Genetics 2025, vol. 59, no. 2, 228–240, doi: https://www.doi.org/10.3103/S0095452725020057

The complete mitochondrial genomes of two apple cultivars reveal the highly conserved structure in cultivated apples

Li J., Chu Z., Yisilam G., Wang Y., Zheng E., Li C., Su Y., Tian X.

  1. College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017 China
  2. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, 541006 China

Apples are as one of the most popular and economically important fruits worldwide, have the important nutritional and ornamental value. However, because of their complexity, studies on apple mitochondrial (mt) genomes have been limited. In this study, the mt genomes of Aksu Fuji and Ralls Janet cultivars were assembled, annotated, and analyzed based on a hybrid strategy using Illumina, and comprehensive comparisons of their structure, gene content, intercellular gene transfer, phylogeny, and RNA editing sites were performed. The mt genome length and gene structure of the two apple cultivars were identical (396,592 bp) and included 63 protein­coding genes (PCGs), 20 transfer RNA (tRNA) genes, and 4 ribosomal RNA (rRNA) genes. There were 44 and 31 mitochondrial plastid fragments (MTPTs) identified between the mt and plastid genomes of the Ralls Janet and Aksu Fuji cultivars, accounting for 1.98 and 2.19 % of their mt genomes, respectively. Furthermore, there were 419 and 421 RNA editing sites were detected in Aksu Fuji and Ralls Janet, respectively. Analyses of coding usage bias, nucleotide diversity, selection pressure, and genetic distance revealed that the mt genomes of the two cultivars were highly conserved. Phylogenetic analysis of 29 Rosaceae species showed that Aksu Fuji and Ralls Janet clustered with Malus baccata and M. kansuensis. This study provides new insights into the genetics, systematics, and evolution of apple mt genomes.

Keywords: cultivated apple, mitochondrial genome, mitochondrial plastid sequences, RNA editing sites, phylogenetic analysis

TSitologiya i Genetika
2025, vol. 59, no. 2, 94-97

Current Issue
Cytology and Genetics
2025, vol. 59, no. 2, 228–240,
doi: 10.3103/S0095452725020057

Full text and supplemented materials

References

Beier, S., Thiel, T., Münch, T., Scholz, U., et al., MISA-web: a web server for microsatellite prediction, Bioinformatics, 2017, vol. 33, pp. 2583–2585. https://doi.org/10.1093/bioinformatics/btx198

Benson, G., Tandem repeats finder: a program to analyze DNA sequences, Nucleic Acids Res., 1999, vol. 27, pp. 573–580. https://doi.org/10.1093/nar/27.2.573

Brand, M.D., Orr, A.L., Perevoshchikova, I.V., and Quinlan, C.L., The role of mitochondrial function and cellular bioenergetics in ageing and disease, Br. J. Dermatol., 2013, vol. 169, pp. 1–8. https://doi.org/10.1111/bjd.12208

Bu, Y.F., Wu, X.Y., Sun, N., Man, Y., et al., Codon usage bias predicts the functional MYB10 gene in Populus, J. Plant Physiol., 2021, vol. 265, p. 153491. https://doi.org/10.1016/j.jplph.2021.153491

Chan, P.P. and Lowe, T.M., tRNAscan-SE: searching for tRNA genes in genomic sequences, Methods Mo.l Biol., 2019, vol. 1962, pp. 1–14. https://doi.org/10.1007/978-1-4939-9173-0_1

Chen, C.J., Chen, H., Zhang, Y., Thomas, H.R., et al., TBtools: an integrative toolkit developed for interactive analyses of big biological data, Mol. Plant, 2020, vol. 13, pp. 1194–1202. https://doi.org/10.1016/j.molp.2020.06.009

Chen, P.X., Li, Z.X., Zhang, D.H., Shen, W.Y., et al., Insights into the effect of human civilization on Malus evolution and domestication, Plant Biotechnol. J., 2021, vol. 19, pp. 2206–2220. https://doi.org/10.1111/pbi.13648

Chen, J., Zang, Y., Liang, S., Xue, S., et al., Comparative analysis of mitochondrial genomes reveals marine adaptation in seagrasses, BMC Genomics, 2022, vol. 23, p. 800. https://doi.org/10.1186/s12864-022-09046-x

Cornille, A., Giraud, T., Smulders, M.J., Roldán-Ruiz, I., et al., The domestication and evolutionary ecology of apples, Trends Genet., 2014, vol. 30, pp. 57–65. https://doi.org/10.1016/j.tig.2013.10.002

Deng, Y.L., Wang, S., Zheng, Y., and Yao, Y.C., Sequence and comparative analysis of chloroplast genome of apple rootstock ‘SH6’, J. Beijing Univ. Agric., 2023, vol. 38, pp. 23–27. https://doi.org/10.13473/j.cnki.issn.1002-3186.2023.0305

Edera, A.A., Small, I., Milone, D.H., and Sanchez-Puerta, M.V., Deepred-Mt: Deep representation learning for predicting C-to-U RNA editing in plant mitochondria, Comput. Biol. Med., 2021, vol. 136, p. 104682. https://doi.org/10.1016/j.compbiomed.2021.104682

Fang, J., Jiang, X.H., Wang, T.F., Zhang, X.J., et al., Tissue-specificity of RNA editing in plant: analysis of transcripts from three tobacco (Nicotiana tabacum) varieties, Plant Biotechnol. Rep., 2021, vol. 15, pp. 471–482. https://doi.org/10.1007/s11816-021-00692-3

Gao, F.L., Chen, C.J., Arab, D.A., Du, Z.G., et al., EasyCodeML: A visual tool for analysis of selection using CodeML, Ecol. Evol., 2019, vol. 9, pp. 3891–3898. https://doi.org/10.1002/ece3.5015

Ge, D.P., Dong, J.M., Guo, L.H., Yan, M., et al., The complete mitochondrial genome sequence of cultivated apple (Malus domestica cv. ‘Yantai Fuji 8’), Mitochondrial DNA, Part B, 2020, vol. 5, pp. 1317–1318. https://doi.org/10.1080/23802359.2020.1733447

Goremykin, V.V., Lockhart, P.J., Viola, R., and Velasco, R., The mitochondrial genome of Malus domestica and the import-driven hypothesis of mitochondrial genome expansion in seed plants, Plant J., 2012, vol. 71, pp. 615–626. https://doi.org/10.1111/j.1365-313X.2012.05014.x

Goryunov, D.V., Goryunova, S.V., Kuznetsova, O.I., Logacheva, M.D., et al., Complete mitochondrial genome sequence of the “copper moss” Mielichhoferia elongata reveals independent nad7 gene functionality loss, Peer J., 2018, vol. 6, p. e4350. https://doi.org/10.7717/peerj.4350

Greiner, S., Lehwark, P., and Bock, R., OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes, Nucleic Acid Res., 2019, vol. 47, pp. W59–W64. https://doi.org/10.1093/nar/gkz238

Gualberto, J.M. and Newton, K.J., Plant mitochondrial genomes: dynamics and mechanisms of mutation, Ann. Rev. Plant Biol., 2017, vol. 68, pp. 225–252. https://doi.org/10.1146/annurev-arplant-043015-112232

Gupta, P.K. and Varshney, R.K., The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat, Euphytica, 2000, vol. 113, pp. 163–185. https://doi.org/10.1023/A:1003910819967

Hahn, C., Bachmann, L., and Chevreux, B., Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach, Nucleic Acid Res., 2013, vol. 41, p. e129. https://doi.org/10.1093/nar/gkt371

Harris, S.A., Robinson, J.P., and Juniper, B.E., Genetic clues to the origin of the apple, Trends Genet., 2002, vol. 18, pp. 426–430. https://doi.org/10.1016/s0168-9525(02)02689-6

Janouškovec, J., Liu, S.L., Martone, P.T., Carré, W., et al., Evolution of red algal plastid genomes: ancient architectures, introns, horizontal gene transfer, and taxonomic utility of plastid markers, PLoS One, 2013, vol. 8, p. e59001. https://doi.org/10.1371/journal.pone.0059001

Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A., et al., ModelFinder: fast model selection for accurate phylogenetic estimates, Nat. Methods, 2017, vol. 14, pp. 587–589. https://doi.org/10.1038/nmeth.4285

Kan, S.L., Shen, T.T., Ran, J.H., and Wang, X.Q., Both Conifer II and Gnetales are characterized by a high frequency of ancient mitochondrial gene transfer to the nuclear genome, BMC Biol., 2021, vol. 19, p. 146. https://doi.org/10.1186/s12915-021-01096-z

Katoh, K., Rozewicki, J., and Yamada, K.D., MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization, Brief Bioinf., 2019, vol. 20, pp. 1160–1166. https://doi.org/10.1093/bib/bbx108

Kleine, T., Maier, U.G., and Leister, D., DNA transfer from organelles to the nucleus: the idiosyncratic genetics of endosymbiosis, Ann. Rev. Plant Biol., 2009, vol. 60, pp. 115–138. https://doi.org/10.1146/annurev.arplant.043008.092119

Kubo, N. and Kadowaki, K.I., The gene encoding mitochondrial succinate dehydrogenase subunit 4 has been successfully transferred to the nuclear genome in pea, while leaving an original sequence as a pseudogene in the mitochondrial genome, Plant Biotechnol., 2001, vol. 18, pp. 283–287. https://doi.org/10.5511/plantbiotechnology.18.283

Kurtz, S., Choudhuri, J.V., Ohlebusch, E., Schleierma-cher, C., et al., REPuter: the manifold applications of repeat analysis on a genomic scale, Nucleic Acid. Res., 2001, vol. 29, pp. 4633–4642. https://doi.org/10.1093/nar/29.22.4633

Lai, R., Feng, X., Chen, J., Zhong, C., et al., Codon usage bias of Canarium album (Lour.) R. transcriptome and its influence factors, J. Nuclear Agric. Sci., 2019, vol. 33, pp. 31–38. https://doi.org/10.11869/j.issn.100-8551.2019.01.0031

Lai, C.J., Wang, J., Kan, S.L., Zhang, S., et al., Comparative analysis of mitochondrial genomes of Broussonetia spp. (Moraceae) reveals heterogeneity in structure, synteny, intercellular gene transfer, and RNA editing, Front. Plant Sci., 2022, vol. 13, p. 1052151. https://doi.org/10.3389/fpls.2022.1052151

Lee, J., Kang, Y., Shin, S.C., Park, H., et al., Combined analysis of the chloroplast genome and transcriptome of the antarctic vascular plant Deschampsia antarctica Desv, PLoS One, 2014, vol. 9, p. e92501. https://doi.org/10.1371/journal.pone.0092501

Liang, X.J., Zhu, C.S., Li, K.X., An, J.C., et al., Codon bias of transcriptomic genes in Cinnamomum camphora, Guihaia, 2021, vol. 41, pp. 2077–2083. https://doi.org/10.11931/guihaia.gxzw202003074

Librado, P. and Rozas, J., DnaSP v5: a software for comprehensive analysis of DNA polymorphism data, Bioinformatics, 2009, vol. 25, pp. 1451–1452. https://doi.org/10.1093/bioinformatics/btp187

Liu, G., Xie, Y.J., Zhang, D.Q., and Chen, H.P., Analysis of SSR loci and development of SSR primers in Eucalyptus, J. For. Res., 2018, vol. 29, pp. 273–282. https://doi.org/10.1007/s11676-017-0434-3

Liu, H., Assembly and evolution analysis of the soybean mitochondrial and chloroplast genomes, Ph. D. Thesis, Xi’an: Northwest Univ., 2023.

Lonsdale, D.M., A review of the structure and organization of the mitochondrial genome of higher plants, Plant Mol. Biol., 1984, vol. 3, pp. 201–206. https://doi.org/10.1007/BF00029655

Ma, K., Discuss the concept of biodiversity, Biodiv. Sci., 1993, vol. 1, pp. 20–22.

Mower, J.P., Variation in protein gene and intron content among land plant mitogenomes, Mitochondrion, 2020, vol. 53, pp. 203–213. https://doi.org/10.1016/j.mito.2020.06.002

Nguyen, L.T., Schmidt, H.A., von Haeseler, A., and Minh, B.Q., IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies, Mol. Biol. Evol., 2015, vol. 32, pp. 268–274. https://doi.org/10.1093/molbev/msu300

Olson, M.S. and McCauley, D.E., Linkage disequilibrium and phylogenetic congruence between chloroplast and mitochondrial haplotypes in Silene vulgaris, Proc. R. Soc. B, 2000, vol. 267, pp. 1801–1808. https://doi.org/10.1098/rspb.2000.1213

Park, J., Xi, H., Kim, Y., Nam, S., et al., The complete mitochondrial genome of new species candidate of Rosa rugosa (Rosaceae), Mitochondrial DNA, Part B, 2020, vol. 5, pp. 3435–3437. https://doi.org/10.1080/23802359.2020.1821820

Pereira, F., Carneiro, J., and Amorim, A., Identification of species with DNA-based technology: current progress and challenges, Recent Pat. DNA Gene Sequences, 2008, vol. 2, pp. 187–199. https://doi.org/10.2174/187221508786241738

Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A., et al., Using SPAdes De Novo assembler, Curr. Protoc. Bioinf., 2020, vol. 70. https://doi.org/10.1002/cpbi.102

Ratajczak, E., Małecka, A., Ciereszko, I., and Staszak, A.M., Mitochondria are important determinants of the aging of seeds, Int. J. Mol. Sci., 2019, vol. 20, p. 1568. https://doi.org/10.3390/ijms20071568

Rieseberg, L.H. and Soltis, D.E., Phylogenetic consequences of cytoplasmic gene flow in plants, Am. J. Bot., 1991, vol. 5, pp. 65–84. https://doi.org/10.1007/BF00021248

Ruhsam, M., Bell, D., Hart, M., and Hollingsworth, P., The genome sequence of the European crab apple, Malus sylvestris (L.) Mill., 1768, Wellcome Open Res., 2022, vol. 7, p. 296. https://doi.org/10.12688/wellcomeopenres.18645.1

Sarkissian, C.D., Vilstrup, J.T., Schubert, M., Seguin-Orlando, A., et al., Mitochondrial genomes reveal the extinct Hippidion as an outgroup to all living equids, Biol. Lett., 2015, vol. 11, p. 20141058. https://doi.org/10.1098/rsbl.2014.1058

Shan, Y.Y., Li, J.L., Zhang, X., and Yu, J., The complete mitochondrial genome of Amorphophallus albus and development of molecular markers for five Amorphophallus species based on mitochondrial DNA, Front. Plant Sci., 2023, vol. 14, p. 1180417. https://doi.org/10.3389/fpls.2023.1180417

Sloan, D.B. and Wu, Z.Q., Molecular Evolution: The perplexing diversity of mitochondrial RNA editing systems, Curr. Biol., 2016, vol. 26, pp. R22–R24. https://doi.org/10.1016/j.cub.2015.11.009

Straub, S.C.K., Cronn, R.C., Edwards, C., Fishbein, M., et al., Horizontal transfer of DNA from the mitochondrial to the plastid genome and its subsequent evolution in Milkweeds (Apocynaceae), Genome Biol. Evol., 2013, vol. 5, pp. 1872–1885. https://doi.org/10.1093/gbe/evt140

Su, Z.L., Wilson, B., Kumar, P., and Dutta, A., Noncanonical roles of tRNAs: tRNA fragments and beyond, Ann. Rev. Genet., 2020, vol. 54, pp. 47–69. https://doi.org/10.1146/annurev-genet-022620-101840

Sun, X.P., Jiao, C., Schwaninger, H., Chao, C.T., et al., Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication, Nat. Genet., 2020, vol. 52, pp. 1423–1432. https://doi.org/10.1038/s41588-020-00723-9

Tamura, K., Stecher, G., and Kumar, S., MEGA11: Molecular Evolutionary Genetics Analysis Version 11, Mol. Biol. Evol., 2021, vol. 38, pp. 3022–3027. https://doi.org/10.1093/molbev/msab120

Tillich, M., Lehwark, P., Pellizzer, T., Ulbricht-Jones, E.S., et al., GeSeq – versatile and accurate annotation of organelle genomes, Nucleic Acids Res., 2017, vol. 45, pp. W6–W11. https://doi.org/10.1093/nar/gkx391

Velasco, R., Zharkikh, A., Affourtit, J., Dhingra, A., et al., The genome of the domesticated apple (Malus × domestica Borkh.), Nat. Genet., 2010, vol. 42, pp. 833–839. https://doi.org/10.1038/ng.654

Wanga, V.O., Dong, X., Oulo, M.A., Mkala, E.M., et al., Complete chloroplast genomes of Acanthochlamys bracteata (China) and Xerophyta (Africa) (Velloziaceae): comparative genomics and phylogenomic placement, Front. Plant Sci., 2021, vol. 12, p. 691833. https://doi.org/10.3389/fpls.2021.691833

Wu, Z.Q., Liao, X.Z., Zhang, X.N., Tembrock, L.R., et al., Genomic architectural variation of plant mitochondria—A review of multichromosomal structuring, J. Syst. Evol., 2022, vol. 60, pp. 160–168. https://doi.org/10.1111/jse.12655

Wynn, E.L. and Christensen, A.C., Repeats of unusual size in plant mitochondrial genomes: identification, incidence and evolution, G3:Genes, Genomes, Genet., 2019, vol. 9, pp. 549–559. https://doi.org/10.1534/g3.118.200948

Xu, S.J., Teng, K., Zhang, H., Wu, J.Y., et al., The first complete mitochondrial genome of Carex (C. breviculmis): a significantly expanded genome with highly structural variations, Planta, 2023, vol. 258, p. 43. https://doi.org/10.1007/s00425-023-04169-1

Zhai, X.Y., Wang, S., Zheng, Y., and Yao, Y.C., Assembly and comparative analysis of four mitochondrial genomes of Malus, J. Beijing Univ. Agric., 2023, vol. 38, pp. 28–33. https://doi.org/10.13473/j.cnki.issn.1002-3186.2023.0306

Zhang, D., Gao, F.L., Jakovlić, I., Zou, H., et al., PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies, Mol. Ecol. Resour., 2020, vol. 20, pp. 348–355. https://doi.org/10.1111/1755-0998.13096

Zhao, N., Grover, C.E., Chen, Z.W., Wendel, J.F., et al., Intergenomic gene transfer in diploid and allopolyploid Gossypium, BMC Plant Biol., 2019, vol. 19, p. 492. https://doi.org/10.1186/s12870-019-2041-2