TSitologiya i Genetika 2025, vol. 59, no. 4, 84-93
Cytology and Genetics 2025, vol. 59, no. 4, 419–442, doi: https://www.doi.org/10.3103/S0095452725040024

Cellular reprogramming of somatic cells to stem cells: an innovative approach in pharmaceutical biotechnology

Bhosle K., Desai S., Patel V., Hurdude S., Nagare S., Thombare K., Kate A.

  • Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education and Research, Savitribai Phule Pune University, Kopargaon, Maharashtra, India

The advancement of cell reprogramming technologies has revolutionized the landscape of regenerative medicine and drug research. This review scrutinizes the process of reprogramming somatic cells into stem cells, particularly focusing on induced pluripotent stem cells (iPSCs), and elucidates their evolution over time. Initially, the review delineates the disparities between normal cells and stem cells. Subsequently, it delves into the historical trajectory of embryonic stem cells (ESCs) and iPSCs. The pivotal role of somatic cell reprogramming in pharmaceutical biotechnology is explored, highlighting its applications in disease modeling, drug discovery, regenerative medicine, and personalized therapies. The review provides insight into the fundamental principles of reprogramming techniques, encompassing iPSC generation, transcription factors, epigenetic modifications, and non­integrative reprogramming methods. Special emphasis is placed on genome­editing techniques such as CRISPR­Cas9, TALENs, ZFNs, and base editing, given their paramount importance in cellular reprogramming endeavours. Finally, the review deliberates on the diverse modalities through which cellular reprogramming can rejuvenate dead cells into stem cells, underscoring the transformative potential of this technology across various domains of biomedicine. By elucidating the multifaceted effects and opportunities of somatic cell reprogramming, this review aims to serve as a valuable resource for scholars and practitioners in the realms of cellular and molecular biology.

Keywords: Induced Pluripotent Stem Cell(iPSCs), Cellular reprogramming, Stem Cell, Somatic Cell, Regenerative medicine

TSitologiya i Genetika
2025, vol. 59, no. 4, 84-93

Current Issue
Cytology and Genetics
2025, vol. 59, no. 4, 419–442,
doi: 10.3103/S0095452725040024

Full text and supplemented materials

References

Aboul-Soud, M.A.M., Alzahrani, A.J., and Mahmoud, A., Induced pluripotent stem cells (iPCSs)–Roles in regenerative therapies, disease modelling and drug screening, Cells, 2021, vol. 10, no. 9, p. 2319. https://doi.org/10.3390/cells10092319

Abulimiti, A., Lai, M.S.L., and Chang, R.C.C., Applications of adeno-associated virus vector-mediated gene delivery for neurodegenerative diseases and psychiatric diseases: Progress, advances, and challenges, Mech. Ageing Dev., 2021, vol. 199, p. 111549. https://doi.org/10.1016/j.mad.2021.111549

Aguirre, M., Escobar, M., Forero Amézquita, S., Cubillos, D., Rincón, C., Vanegas, P., Tarazona, M.P., Atuesta Escobar, S., Blanco, J.C., and Celis, L.G., Application of the Yamanaka transcription factors Oct4, Sox2, Klf4, and c-Myc from the laboratory to the clinic, Genes, 2023, vol. 14, no. 9, p. 1697. https://doi.org/10.3390/genes14091697

Al Abbar, A., Ngai, S.C., Nograles, N., Alhaji, S.Y., and Abdullah, S., Induced pluripotent stem cells: Reprogramming platforms and applications in cell replacement therapy, BioRes. Open Access, 2020, vol. 9, no. 1, pp. 121–136. https://doi.org/10.1089/biores.2019.0046

Al-Ghadban, S., Artiles, M., and Bunnell, B.A., Adipose stem cells in regenerative medicine: Looking forward, Front. Bioeng. Biotechnol., 2020, vol. 9, p. 837464. https://doi.org/10.3389/fbioe.2021.837464

Amberger, M. and Ivics, Z., Latest advances for the sleeping beauty transposon system: 23 years of insomnia but prettier than ever: Refinement and recent innovations of the sleeping beauty transposon system enabling novel, nonviral genetic engineering applications, BioEssays, 2020, vol. 42, no. 11, p. 202000136. https://doi.org/10.1002/bies.202000136

Anwar, S., Mir, F., and Yokota, T., Enhancing the effectiveness of oligonucleotide therapeutics using cell-penetrating peptide conjugation, chemical modification, and carrier-based delivery strategies, Pharmaceutics, 2023, vol. 15, no. 4, p. 1130. https://doi.org/10.3390/pharmaceutics15041130

Anzalone, A.V., Koblan, L.W., and Liu, D.R., Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors, Nat. Biotechnol., 2020a, vol. 38, no. 7, pp. 824–844. https://doi.org/10.1038/s41587-020-0561-9

Ashe, A., Colot, V., and Oldroyd, B.P., How does epigenetics influence the course of evolution?, Philos. Trans. R. Soc., B, 2021, vol. 376, no. 1826, p. 0111. https://doi.org/10.1098/rstb.2020.0111

Aydin, B. and Mazzoni, E.O., Cell reprogramming: The many roads to success, Annu. Rev. Cell Dev. Biol., 2019, vol. 35, pp. 433–452. https://doi.org/10.1146/annurev-cellbio-100818-125127

Bakhmet, E.I. and Tomilin, A.N., Key features of the POU transcription factor Oct4 from an evolutionary perspective, Cell. Mol. Life Sci., 2021, vol. 78, no. 23, pp. 7339–7353. https://doi.org/10.1007/s00018-021-03975-8

Bashor, C.J., Hilton, I.B., Bandukwala, H., Smith, D.M., and Veiseh, O., Engineering the next generation of cell-based therapeutics, Nat. Rev. Drug Discovery, 2022, vol. 21, no. 9, pp. 655–675. https://doi.org/10.1038/s41573-022-00476-6

Bayart, E. and Cohen-Haguenauer, O., Technological overview of iPS induction from human adult somatic cells, Curr. Gene Ther., 2013, vol. 13, no. 2, pp. 73–92. https://doi.org/10.2174/1566523211313020002

Becker, S. and Boch, J., TALE and TALEN genome editing technologies, Gene Genome Ed., 2021, vol. 2, p. 100007. https://doi.org/10.1016/j.ggedit.2021.100007

Belviso, I., Romano, V., Nurzynska, D., Castaldo, C., and Di Meglio, F., Non-integrating methods to produce induced pluripotent stem cells for regenerative medicine: An overview, Biomech. Funct. Tissue Eng., 2021, p. 95070. https://doi.org/10.5772/intechopen.95070

Beying, N., Schmidt, C., and Puchta, H., Double Strand Break (DSB) Repair Pathways in Plants and Their Application in Genome Engineering, 2021, pp. 1–24. https://doi.org/10.19103/as.2020.0082.04

Bhattacharjee, G., Gohil, N., Khambhati, K., Mani, I., Maurya, R., Karapurkar, J.K., Gohil, J., Chu, D.T., Vu-Thi, H., Alzahrani, K.J., Show, P.L., Rawal, R.M., Ramakrishna, S., and Singh, V., Current approaches in CRISPR-Cas9 mediated gene editing for biomedical and therapeutic applications, J. Controlled Release, 2022, vol. 343, pp. 703–723. https://doi.org/10.1016/j.jconrel.2022.02.005

Bidabadi, S.S. and Mohan Jain, S., Cellular, molecular, and physiological aspects of in vitro plant regeneration, Plants, 2020, vol. 9, no. 6, p. 702. https://doi.org/10.3390/plants9060702

Bloomer, H., Khirallah, J., Li, Y., and Xu, Q., CRISPR/Cas9 ribonucleoprotein-mediated genome and epigenome editing in mammalian cells, Adv. Drug Delivery Rev., 2022, vol. 181, p. 114087. https://doi.org/10.1016/j.addr.2021.114087

Bonchuk, A., Boyko, K., Fedotova, A., Nikolaeva, A., Lushchekina, S., Khrustaleva, A., Popov, V., and Georgiev, P., Structural basis of diversity and homodimerization specificity of zinc-finger-associated domains in Drosophila, Nucleic Acids Res., 2021, vol. 49, no. 4, pp. 2375–2389. https://doi.org/10.1093/nar/gkab061

Bruno, S., Williams, R.J., and Del Vecchio, D., Epigenetic cell memory: The gene’s inner chromatin modification circuit, PLoS Comput. Biol., 2022, vol. 18, no. 4, p. 1009961. https://doi.org/10.1371/journal.pcbi.1009961

Bulcha, J.T., Wang, Y., Ma, H., Tai, P.W.L., and Gao, G., Viral vector platforms within the gene therapy landscape, Signal Transduct. Targeted Ther., 2021, vol. 6, no. 1, p. 53. https://doi.org/10.1038/s41392-021-00487-6

Burnett, S.D., Blanchette, A.D., Chiu, W.A., and Rusyn, I., Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes as an in vitro model in toxicology: Strengths and weaknesses for hazard identification and risk characterization, Expert Opin. Drug Metab. Toxicol., 2021, vol. 17, no. 8, pp. 887–902. https://doi.org/10.1080/17425255.2021.1894122

Cable, D.M., Murray, E., Shanmugam, V., Zhang, S., Zou, L.S., Diao, M., Chen, H., Macosko, E.Z., Irizarry, R.A., and Chen, F., Cell type-specific inference of differential expression in spatial transcriptomics, Nat. Methods, 2022, vol. 19, no. 9, pp. 1076–1087. https://doi.org/10.1038/s41592-022-01575-3

Cevallos, R.R., Edwards, Y.J.K., Parant, J.M., Yoder, B.K., and Hu, K., Human transcription factors responsive to initial reprogramming predominantly undergo legitimate reprogramming during fibroblast conversion to iPSCs, Sci. Rep., 2020, vol. 10, no. 1, p. 19710. https://doi.org/10.1038/s41598-020-76705-y

Chabanovska, O., Galow, A.M., David, R., and Lemcke, H., mRNA – A game changer in regenerative medicine, cell-based therapy and reprogramming strategies, Adv. Drug Delivery Rev., 2021, vol. 179, p. 114002. https://doi.org/10.1016/j.addr.2021.114002

Chen, P.J. and Liu, D.R., Prime editing for precise and highly versatile genome manipulation, Nat. Rev. Genet., 2023, vol. 24, no. 3, pp.161–177. https://doi.org/10.1038/s41576-022-00541-1

Chen, Y., Pal, S., and Hu, Q., Recent advances in biomaterial-assisted cell therapy, J. Mater. Chem. B, 2022, vol. 10, no. 37, pp. 7222–7238. https://doi.org/10.1039/d2tb00583b

Chitra, S., Rajeshkumar, S., and Mathew, N.K., Bioceramics: From concept to clinic, in Advanced Bioceramics: Properties, Processing, and Applications, 2023, p. 20. https://doi.org/10.1201/9781003258353-11

Clark, I.H., Roman, A., Fellows, E., Radha, S., Var, S.R., Roushdy, Z., Borer, S.M., Johnson, S., Chen, O., Borgida, J.S., Steevens, A., Shetty, A., Strell, P., Low, W.C., and Grande, A.W., Cell Reprogramming for regeneration and repair of the nervous system, Biomedicines, 2022, vol. 10, no. 10, p. 2598. https://doi.org/10.3390/biomedicines10102598

Cui, G., Xu, Y., Cao, S., and Shi, K., Inducing somatic cells into pluripotent stem cells is an important platform to study the mechanism of early embryonic development, Mol. Reprod. Dev., 2022, vol. 89, no. 2, pp. 70–85. https://doi.org/10.1002/mrd.23559

Das, D., Fletcher, R.B., and Ngai, J., Cellular mechanisms of epithelial stem cell self-renewal and differentiation during homeostasis and repair, Wiley Interdiscip. Rev.: Dev. Biol., 2020, vol. 9, no. 1, p. 361. https://doi.org/10.1002/wdev.361

de Paula, A.G.P., de Lima, J.D., Bastos, T.S.B., Czaikovski, A.P., dos Santos Luz, R.B., Yuasa, B.S., Smanioto, C.C.S., Robert, A.W., and Braga, T.T., Decellularized extracellular matrix: The role of this complex biomaterial in regeneration, ACS Omega, 2023, vol. 8, no. 25, pp. 22256–22267. https://doi.org/10.1021/acsomega.2c06216

Dey, C., Raina, K., Haridhasapavalan, K.K., Thool, M., Sundaravadivelu, P.K., Adhikari, P., Gogoi, R., and Thummer, R.P., An overview of reprogramming approaches to derive integration-free induced pluripotent stem cells for prospective biomedical applications, Recent Adv. iPSC Technol., 2021, vol. 5, pp. 231–287. https://doi.org/10.1016/B978-0-12-822231-7.00011-4

Dilip Kumar, S., Aashabharathi, M., KarthigaDevi, G., Subbaiya, R., and Saravanan, M., Insights of CRISPR-Cas systems in stem cells: Progress in regenerative medicine, Mol. Biol. Rep., 2022, vol. 49, no. 1, pp. 657–673. https://doi.org/10.1007/s11033-021-06832-w

Dobre, E.G., Constantin, C., Costache, M., and Neagu, M., Interrogating epigenome toward personalized approach in cutaneous melanoma, J. Pers. Med., 2021, vol. 11, no. 9, p. 901. https://doi.org/10.3390/jpm11090901

Donadeu, F.X. and Esteves, C.L., Prospects and challenges of induced pluripotent stem cells in equine health, Front. Vet. Sci., 2015, vol. 2, p. 00059. https://doi.org/10.3389/fvets.2015.00059

Doss, M.X. and Sachinidis, A., Current challenges of iPSC-based disease modeling and therapeutic implications, Cells, 2019, vol. 8, no. 5, p. 403. https://doi.org/10.3390/cells8050403

Doudna, J.A., The promise and challenge of therapeutic genome editing, Nature, 2020, vol. 578, no. 7794, pp. 229–236. https://doi.org/10.1038/s41586-020-1978-5

Dubose, C.O., Daum, J.R., Sansam, C.L., and Gorbsky, G.J., Dynamic features of chromosomal instability during culture of induced pluripotent stem cells, Genes, 2022, vol. 13, no. 7, p. 1157. https://doi.org/10.3390/genes13071157

Duckert, B., Vinkx, S., Braeken, D., and Fauvart, M., Single-cell transfection technologies for cell therapies and gene editing, J. Controlled Release, 2021, vol. 330, pp. 963–975. https://doi.org/10.1016/j.jconrel.2020.10.068

Fernandes, J.C.R., Acuña, S.M., Aoki, J.I., Floeter-Winter, L.M., and Muxel, S.M., Long non-coding RNAs in the regulation of gene expression: Physiology and disease, Non-Coding RNA, 2019, vol. 5, no. 1, p. 17. https://doi.org/10.3390/ncrna5010017

Frederiksen, H.R., Doehn, U., Tveden-Nyborg, P., and Freude, K.K., Non-immunogenic induced pluripotent stem cells, a promising way forward for allogenic transplantations for neurological disorders, Front. Genome Ed., 2020, vol. 2, p. 623717. https://doi.org/10.3389/fgeed.2020.623717

Fritsche, E., Haarmann-Stemmann, T., Kapr, J., Galanjuk, S., Hartmann, J., Mertens, P.R., Kämpfer, A.A.M., Schins, R.P.F., Tigges, J., and Koch, K., Stem cells for next level toxicity testing in the 21st century, Small, 2021, vol. 17, no. 15, p. 202006252. https://doi.org/10.1002/smll.202006252

Fuchs, E. and Blau, H.M., Tissue stem cells: Architects of their niches, Cell Stem Cell, 2020, vol. 27, no. 4, pp. 532–556. https://doi.org/10.1016/j.stem.2020.09.011

Fung, C. and Vanden Berghe, P., Functional circuits and signal processing in the enteric nervous system, Cell. Mol. Life Sci., 2020, vol. 77, no. 22, pp. 4505–4522. https://doi.org/10.1007/s00018-020-03543-6

Gaharwar, A.K., Singh, I., and Khademhosseini, A., Engineered biomaterials for in situ tissue regeneration, Nat. Rev. Mater., 2020, vol. 5, no. 9, pp. 686–705. https://doi.org/10.1038/s41578-020-0209-x

Galiakberova, A.A. and Dashinimaev, E.B., Neural stem cells and methods for their generation from induced pluripotent stem cells in vitro, Front. Cell Dev. Biol., 2020, vol. 8, p. 00815. https://doi.org/10.3389/fcell.2020.00815

Gao, Y., Liu, X., Chen, N., Yang, X., and Tang, F., Recent advance of liposome nanoparticles for nucleic acid therapy, Pharmaceutics, 2023, vol. 15, no. 1, p. 178. https://doi.org/10.3390/pharmaceutics15010178

Gaudelli, N.M., Lam, D.K., Rees, H.A., Solá-Esteves, N.M., Barrera, L.A., Born, D.A., Edwards, A., Gehrke, J.M., Lee, S.J., Liquori, A.J., Murray, R., Packer, M.S., Rinaldi, C., Slaymaker, I.M., Yen, J., Young, L.E., and Ciaramella, G., Directed evolution of adenine base editors with increased activity and therapeutic application, Nat. Biotechnol., 2020, vol. 38, no. 7, pp. 892–900. https://doi.org/10.1038/s41587-020-0491-6

Graf, T., Historical origins of transdifferentiation and reprogramming, Cell Stem Cell, 2011, vol. 9, no. 6, pp. 504–516. https://doi.org/10.1016/j.stem.2011.11.012

Grskovic, M., Javaherian, A., Strulovici, B., and Daley, G.Q., Induced pluripotent stem cells-opportunities for disease modelling and drug discovery, Nat. Rev. Drug Discovery, 2011, vol. 10, no. 12, pp. 915–929. https://doi.org/10.1038/nrd3577

Guerreiro, S. and Maciel, P., Transition from animal-based to human induced pluripotent stem cells (iPSCs)-based models of neurodevelopmental disorders: Opportunities and challenges, Cells, 2023, vol. 12, no. 4, p. 538. https://doi.org/10.3390/cells12040538

Gurdon, J.B., The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles, J. Embryol. Exp. Morphol., 1962, vol. 10, pp. 622–640. https://doi.org/10.1242/dev.10.4.622

Gurumoorthy, N., Nordin, F., Tye, G.J., Wan Kamarul Zaman, W.S., and Ng, M.H., Non-integrating lentiviral vectors in clinical applications: A glance through, Biomedicines, 2022, vol. 10, no. 1, p. 107. https://doi.org/10.3390/biomedicines10010107

Hade, M.D., Suire, C.N., and Suo, Z., Mesenchymal stem cell-derived exosomes: Applications in regenerative medicine, Cells, 2021, vol. 10, no. 8, p. 1959. https://doi.org/10.3390/cells10081959

Han, F., Wang, J., Ding, L., Hu, Y., Li, W., Yuan, Z., Guo, Q., Zhu, C., Yu, L., Wang, H., Zhao, Z., Jia, L., Li, J., Yu, Y., Zhang, W., Chu, G., Chen, S., and Li, B., Tissue Engineering and regenerative medicine: Achievements, future, and sustainability in Asia, Front. Bioeng. Biotechnol., 2020, vol. 8, p. 83. https://doi.org/10.3389/fbioe.2020.00083

Han, F., Liu, Y., Huang, J., Zhang, X., and Wei, C., Current approaches and molecular mechanisms for directly reprogramming fibroblasts into neurons and dopamine neurons, Front. Aging Neurosci., 2021, vol. 13, p. 738529. https://doi.org/10.3389/fnagi.2021.738529

Haridhasapavalan, K.K., Raina, K., Dey, C., Adhikari, P., and Thummer, R.P., An insight into reprogramming barriers to iPSC generation, Stem Cell Rev. Rep., 2020, vol. 16, no. 1, pp. 56–81. https://doi.org/10.1007/s12015-019-09931-1

Haworth, R. and Sharpe, M., Accept or reject: The role of immune tolerance in the development of stem cell therapies and possible future approaches, Toxicol. Pathol., 2021, vol. 49, no. 7, pp. 1308–1316. https://doi.org/10.1177/0192623320918241

Ho, Y.K., Woo, J.Y., Tu, G.X.E., Deng, L.W., and Too, H.P., A highly efficient non-viral process for programming mesenchymal stem cells for gene directed enzyme prodrug cancer therapy, Sci. Rep., 2020, vol. 10, no. 1, p. 14257. https://doi.org/10.1038/s41598-020-71224-2

Hoang, D.M., Pham, P.T., Bach, T.Q., Ngo, A.T.L., Nguyen, Q.T., Phan, T.T.K., Nguyen, G.H., Le, P.T.T., Hoang, V.T., Forsyth, N.R., Heke, M., and Nguyen, L.T., Stem cell-based therapy for human diseases, Signal Transduction Targeted Ther., 2022, vol. 7, no. 1, p. 272. https://doi.org/10.1038/s41392-022-01134-4

Hou, X., Zaks, T., Langer, R., and Dong, Y., Lipid nanoparticles for mRNA delivery, Nat. Rev. Mater., 2021, vol. 6, no. 12, pp. 1078–1094. https://doi.org/10.1038/s41578-021-00358-0

Hsu, P.S., Yu, S. H., Tsai, Y.T., Chang, J.Y., Tsai, L.K., Ye, C.H., Song, N.Y., Yau, L.C., and Lin, S.P., More than causing (epi)genomic instability: Emerging physiological implications of transposable element modulation, J. Biomed. Sci., 2021, vol. 28, no. 1, p. 58. https://doi.org/10.1186/s12929-021-00754-2

Hu, K., All roads lead to induced pluripotent stem cells: The technologies of iPSC generation, Stem Cells Dev., 2014, vol. 23, no. 12, p. 87. https://doi.org/10.1089/scd.2013.0620

Huang, C.Y., Liu, C.L., Ting, C.Y., Chiu, Y.T., Cheng, Y.C., Nicholson, M.W., and Hsieh, P.C.H., Human iPSC banking: Barriers and opportunities, J. Biomed. Sci., 2019, vol. 26, no. 1, p. 87. https://doi.org/10.1186/s12929-019-0578-x

Huang, T.P., Newby, G.A., and Liu, D.R., Precision genome editing using cytosine and adenine base editors in mammalian cells, Nat. Protocols, 2021, vol. 16, no. 2, pp. 1089–1128. https://doi.org/10.1038/s41596-020-00450-9

Hybiak, J., Jankowska, K., Machaj, F., Rosik, J., Broniarek, I., Żyluk, A., Hilderman, G.C., Małecki, A., Łos, M.J., and Urasińska, E., Reprogramming and transdifferentiation – two key processes for regenerative medicine, Eur. J. Pharmacol., 2020, vol. 882, p. 173202. https://doi.org/10.1016/j.ejphar.2020.173202

Ilango, S., Paital, B., Jayachandran, P., Padma, P.R., and Nirmaladevi, R., Epigenetic alterations in cancer, Front. Biosci. – Landmark, 2020, vol. 25, no. 6, p. 4847. https://doi.org/10.2741/4847

Jaenisch, R. and Young, R., Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming, Cell, 2008, vol. 132, no. 4, pp. 567–582. https://doi.org/10.1016/j.cell.2008.01.015

Jarrige, M., Frank, E., Herardot, E., Martineau, S., Darle, A., Benabides, M., Domingues, S., Chose, O., Habeler, W., Lorant, J., Baldeschi, C., Martinat, C., Monville, C., Morizur, L., and M’barek, K.Ben., The future of regenerative medicine: Cell therapy using pluripotent stem cells and acellular therapies based on extracellular vesicles, Cells, 2021, vol. 10, no. 2, p. 240. https://doi.org/10.3390/cells10020240

Jing, T., Ardiansyah, R., Xu, Q., Xing, Q., and Müller-Xing, R., Reprogramming of cell fate during root regeneration by transcriptional and epigenetic networks, Front. Plant Sci., 2020, vol. 11, p. 317. https://doi.org/10.3389/fpls.2020.00317

Kamata, S., Hashiyama, R., Hanaika, H., Ohkubo, I., Saito, R., Honda, A., Anan, Y., Akahoshi, N., Noguchi, K., Kanda, Y., and Ishii, I., Cytotoxicity comparison of 35 developmental neurotoxicants in human induced pluripotent stem cells (iPSC), iPSC-derived neural progenitor cells, and transformed cell lines, Toxicol. In Vitro, 2020, vol. 69, p. 104999. https://doi.org/10.1016/j.tiv.2020.104999

Kantor, A., McClements, M.E., and Maclaren, R.E., Crispr-cas9 dna base-editing and prime-editing, Int. J. Mol. Sci., 2020a, vol. 21, no. 17, p. 6240. https://doi.org/10.3390/ijms21176240

Kao, C.F., Chuang, C.Y., Chen, C.H., and Kuo, H.C., Human pluripotent stem cells: Current status and future perspectives, Chin. J. Physiol., 2008, vol. 51, no. 4, pp. 214–225.

Karagiannis, P., Takahashi, K., Saito, M., Yoshida, Y., Okita, K., Watanabe, A., Inoue, H., Yamashita, J.K., Todani, M., Nakagawa, M., Osawa, M., Yashiro, Y., Yamanaka, S., and Osafune, K., Induced pluripotent stem cells and their use in human models of disease and development, Physiol. Rev., 2019, vol. 99, no. 1, pp. 79–114. https://doi.org/10.1152/physrev.00039.2017

Karami, Z., Moradi, S., Eidi, A., Soleimani, M., and Jafarian, A., Induced pluripotent stem cells: Generation methods and a new perspective in COVID-19 research, Front. Cell Dev. Biol., 2023, vol. 10, p. 1050856. https://doi.org/10.3389/fcell.2022.1050856

Karbassi, E., Fenix, A., Marchiano, S., Muraoka, N., Nakamura, K., Yang, X., and Murry, C.E., Cardiomyocyte maturation: Advances in knowledge and implications for regenerative medicine, Nat. Rev. Cardiol., 2020, vol. 17, no. 6, pp. 341–359. https://doi.org/10.1038/s41569-019-0331-x

Kim, K.P., Han, D.W., Kim, J., and Schöler, H.R., Biological importance of OCT transcription factors in reprogramming and development, Exp. Mol. Med., 2021, vol. 53, no. 6, pp. 1018–1028. https://doi.org/10.1038/s12276-021-00637-4

Kishino, Y., Fujita, J., Tohyama, S., Okada, M., Tanosaki, S., Someya, S., and Fukuda, K., Toward the realization of cardiac regenerative medicine using pluripotent stem cells, Inflammation Regener., 2020, vol. 40, no. 1, p. 1. https://doi.org/10.1186/s41232-019-0110-4

Kolios, G. and Moodley, Y., Introduction to stem cells and regenerative medicine, Respiration, 2013, vol. 85, no. 1, pp. 3–10. https://doi.org/10.1159/000345615

Kribelbauer, J.F., Lu, X.J., Rohs, R., Mann, R.S., and Bussemaker, H.J., Toward a mechanistic understanding of DNA methylation readout by transcription factors, J. Mol. Biol., 2020, vol. 432, no. 6, p. 1. https://doi.org/10.1016/j.jmb.2019.10.021

Kues, W.A., Kumar, D., Selokar, N.L., and Talluri, T.R., Applications of genome editing tools in stem cells towards regenerative medicine: An update, Curr. Stem Cell Res. Ther., 2021, vol. 17, no. 3, pp. 267–279. https://doi.org/10.2174/1574888x16666211124095527

Kumar, D., Baligar, P., Srivastav, R., Narad, P., Raj, S., Tandon, C., and Tandon, S., Stem Cell Based Preclinical Drug Development and Toxicity Prediction, Curr. Pharm. Design, 2020, vol. 27, no. 19, pp. 2237–2251. https://doi.org/10.2174/1381612826666201019104712

Lancaster, M.A., Renner, M., Martin, C.A., Wenzel, D., Bicknell, L.S., Hurles, M.E., Homfray, T., Penninger, J.M., Jackson, A.P., and Knoblich, J.A., Cerebral organoids model human brain development and microcephaly, Nature, 2013, vol. 501, no. 7467, pp. 373–379. https://doi.org/10.1038/nature12517

Li, S. and Tollefsbol, T.O., DNA methylation methods: Global DNA methylation and methylomic analyses, Methods, 2021, vol. 187, pp. 28–43. https://doi.org/10.1016/j.ymeth.2020.10.002

Li, H., Yang, Y., Hong, W., Huang, M., Wu, M., and Zhao, X., Applications of genome editing technology in the targeted therapy of human diseases: Mechanisms, advances and prospects, Signal Transduction Targeted Ther., 2020, vol. 5, no. 1, p. 1. https://doi.org/10.1038/s41392-019-0089-y

Li, R., Liu, K., Huang, X., Li, D., Ding, J., Liu, B., and Chen, X., Bioactive Materials Promote Wound Healing through Modulation of Cell Behaviors, Adv. Sci., 2022, vol. 9, no. 10, p. 2105152. https://doi.org/10.1002/advs.202105152

Li, X., Le, Y., Zhang, Z., Nian, X., Liu, B., and Yang, X., Viral vector-based gene therapy, Int. J. Mol. Sci., 2023, vol. 24, no. 9, p. 7736. https://doi.org/10.3390/ijms24097736

Liu, G., David, B.T., Trawczynski, M., and Fessler, R.G., Advances in pluripotent stem cells: History, mechanisms, technologies, and applications, Stem Cell Rev. Rep., 2020a, vol. 16, no. 1, pp. 3–32. https://doi.org/10.1007/s12015-019-09935-x

Liu, X., Li, C., Zheng, K., Zhao, X., Xu, X., Yang, A., Yi, M., Tao, H., Xie, B., Qiu, M., and Yang, J., Chromosomal aberration arises during somatic reprogramming to pluripotent stem cells, Cell Div., 2020, vol. 15, no. 1, p. 12. https://doi.org/10.1186/s13008-020-00068-z

Lo, J.H.H., Edwards, M., Langerman, J., Sridharan, R., Plath, K., and Smale, S.T., Oct4:Sox2 binding is essential for establishing but not maintaining active and silent states of dynamically regulated genes in pluripotent cells, Genes Dev., 2022, vol. 36, nos. 19–20, pp. 1079–1095. https://doi.org/10.1101/gad.350113.122

Long, Y., Yang, Y., Pan, G., and Shen, Y., New insights into tissue culture plant-regeneration mechanisms, Front. Plant Sci., 2022, vol. 13, p. 926752. https://doi.org/10.3389/fpls.2022.926752

Luo, X., Wang, X., Gao, Y., Zhu, J., Liu, S., Gao, G., and Gao, P., Molecular mechanism of RNA recognition by zinc-finger antiviral protein, Cell Rep., 2020, vol. 30, no. 1, pp. 46–52. https://doi.org/10.1016/j.celrep.2019.11.116

Maali, A., Maroufi, F., Sadeghi, F., Atashi, A., Kouchaki, R., Moghadami, M., and Azad, M., Induced pluripotent stem cell technology: Trends in molecular biology, from genetics to epigenetics, Epigenomics, 2021, vol. 13, no. 8, pp. 631–647. https://doi.org/10.2217/epi-2020-0409

Madrid, M., Sumen, C., Aivio, S., and Saklayen, N., Autologous induced pluripotent stem cell-based cell therapies: Promise, progress, and challenges, Curr. Protoc., 2021, vol. 1, no. 3, p. 88. https://doi.org/10.1002/cpz1.88

Mandal, P.K., Ferreira, L.M.R., Collins, R., Meissner, T.B., Boutwell, C.L., Friesen, M., Vrbanac, V., Garrison, B.S., Stortchevoi, A., Bryder, D., Musunuru, K., Brand, H., Tager, A.M., Allen, T.M., Talkowski, M.E., Rossi, D.J., and Cowan, C.A., Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9, Cell Stem Cell, 2014, vol. 15, no. 5, pp. 643–652. https://doi.org/10.1016/j.stem.2014.10.004

Mao, J., Saiding, Q., Qian, S., Liu, Z., Zhao, B., Zhao, Q., Lu, B., Mao, X., Zhang, L., Zhang, Y., Sun, X., and Cui, W., Reprogramming stem cells in regenerative medicine, Smart Med., 2022, vol. 1, no. 1, p. e20220005. https://doi.org/10.1002/smmd.20220005

Mao, Y., Wang, S., Yu, J., and Li, W., Engineering pluripotent stem cells with synthetic biology for regenerative medicine, Med. Rev., 2024, pp. 90–109. https://doi.org/10.1515/mr-2023-0050

Masui, S., Nakatake, Y., Toyooka, Y., Shimosato, D., Yagi, R., Takahashi, K., Okochi, H., Okuda, A., Matoba, R., Sharov, A.A., Ko, M.S.H., and Niwa, H., Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells, Nat. Cell Biol., 2007, vol. 9, no. 6, pp. 625–635. https://doi.org/10.1038/ncb1589

Meir, Y.J.J. and Li, G., Somatic reprogramming-above and beyond pluripotency, Cells, 2021, vol. 10, no. 11, p. 2888. https://doi.org/10.3390/cells10112888

Möller, M.N., Orrico, F., Villar, S.F., López, A.C., Silva, N., Donzé, M., Thomson, L., and Denicola, A., Oxidants and antioxidants in the redox biochemistry of human red blood cells, ACS Omega, 2022, pp. 147–168. https://doi.org/10.1021/acsomega.2c06768

Murry, C.E. and Keller, G., Differentiation of embryonic stem cells to clinically relevant populations: Lessons from embryonic development, Cell, 2008, vol. 132, no. 4, pp. 661–680. https://doi.org/10.1016/j.cell.2008.02.008

Mushtaq, M., Dar, A.A., Skalicky, M., Tyagi, A., Bhagat, N., Basu, U., Bhat, B.A., Zaid, A., Ali, S., Dar, T.U.H., Rai, G.K., Wani, S.H., Habib-Ur-rahman, M., Hejnak, V., Vachova, P., Brestic, M., Çığ, A., Çığ, F., Erman, M., and Sabagh, A.E.L., Crispr-based genome editing tools: Insights into technological breakthroughs and future challenges, Genes, 2021, vol. 12, no. 6, p. 797. https://doi.org/10.3390/genes12060797

Nagoshi, N. and Okano, H., iPSC-derived neural precursor cells: Potential for cell transplantation therapy in spinal cord injury, Cell. Mol. Life Sci., 2018, vol. 75, no. 6, pp. 989–1000. https://doi.org/10.1007/s00018-017-2676-9

Nakamura, M., Gao, Y., Dominguez, A.A., and Qi, L.S., CRISPR technologies for precise epigenome editing, Nat. Cell Biol., 2021, vol. 23, no. 1, pp. 11–22. https://doi.org/10.1038/s41556-020-00620-7

Netsrithong, R. and Wattanapanitch, M., Advances in adoptive cell therapy using induced pluripotent stem cell-derived T cells, Front. Immunol., 2021, vol. 12, p. 759558. https://doi.org/10.3389/fimmu.2021.759558

Nishimura, K., Sano, M., Ohtaka, M., Furuta, B., Umemura, Y., Nakajima, Y., Ikehara, Y., Kobayashi, T., Segawa, H., Takayasu, S., Sato, H., Motomura, K., Uchida, E., Kanayasu-Toyoda, T., Asashima, M., Nakauchi, H., Yamaguchi, T., and Nakanishia, M., Development of defective and persistent Sendai virus vector: A unique gene delivery/expression system ideal for cell reprogramming, J. Biol. Chem., 2011, vol. 286, no. 6, pp. 4760–4771. https://doi.org/10.1074/jbc.M110.183780

Nogueira, I.P.M., Costa, G.M.J., and Lacerda, S.M. dos S.N., Avian iPSC derivation to recover threatened wild species: A comprehensive review in light of well-established protocols, Animals, 2024, vol. 14, no. 2, p. 220. https://doi.org/10.3390/ani14020220

O’Malley, J., Woltjen, K., and Kaji, K., New strategies to generate induced pluripotent stem cells, Curr. Opin. Biotechnol., 2009, vol. 20, no. 5, pp. 516–521. https://doi.org/10.1016/j.copbio.2009.09.005

O’Shea, O., Steeg, R., Chapman, C., Mackintosh, P., and Stacey, G.N., Development and implementation of large-scale quality control for the European bank for induced Pluripotent Stem Cells, Stem Cell Res., 2020, vol. 45, p. 101773. https://doi.org/10.1016/j.scr.2020.101773

Oh, S. and Kessler, J.A., Design, assembly, production, and transfection of synthetic modified mRNA, Methods, 2018, vol. 133, pp. 29–43. https://doi.org/10.1016/j.ymeth.2017.10.008

Omole, A.E. and Fakoya, A.O.J., Ten years of progress and promise of induced pluripotent stem cells: Historical origins, characteristics, mechanisms, limitations, and potential applications, PeerJ, 2018, vol. 2018, pp. 43–70. https://doi.org/10.7717/peerj.4370

Ortiz-Vitali, J.L. and Darabi, R., iPSCs as a platform for disease modeling, drug screening, and personalized therapy in muscular dystrophies, Cells, 2019, vol. 8, no. 1, p. 20. https://doi.org/10.3390/cells8010020

Paik, D.T., Chandy, M., and Wu, J.C., Patient and disease-specific induced pluripotent stem cells for discovery of personalized cardiovascular drugs and therapeutics, Pharmacol. Rev., 2020, vol. 72, no. 1, pp. 320–342. https://doi.org/10.1124/pr.116.013003

Pandey, S., Jirásko, M., Lochman, J., Chvátal, A., Chottova Dvorakova, M., and Kučera, R., iPSCs in neurodegenerative disorders: A unique platform for clinical research and personalized medicine, J. Personalized Med., 2022, vol. 12, no. 9, p. 1485. https://doi.org/10.3390/jpm12091485

Pantazis, C.B., Yang, A., Lara, E., McDonough, J.A., Blauwendraat, C., Peng, L., Oguro, H., Kanaujiya, J., Zou, J., Sebesta, D., Pratt, G., Cross, E., Blockwick, J., Buxton, P., Kinner-Bibeau, L., Medura, C., Tompkins, C., Hughes, S., Santiana, M., et al., A reference human induced pluripotent stem cell line for large-scale collaborative studies, Cell Stem Cell, 2022, vol. 29, no. 12, pp. 1685–1702. https://doi.org/10.1016/j.stem.2022.11.004

Parmar, M., Grealish, S., and Henchcliffe, C., The future of stem cell therapies for Parkinson disease, Nat. Rev. Neurosci., 2020, vol. 21, no. 2, pp. 103–115. https://doi.org/10.1038/s41583-019-0257-7

Paul, S. and Majhi, A., Chemical approaches to stem cell and signaling pathways for therapeutics, Cancer Stem Cells Signal. Pathways, 2023, pp. 309–321. https://doi.org/10.1016/B978-0-443-13212-4.00030-1

Phan, T.H.G., Paliogiannis, P., Nasrallah, G.K., Giordo, R., Eid, A.H., Fois, A.G., Zinellu, A., Mangoni, A.A., and Pintus, G., Emerging cellular and molecular determinants of idiopathic pulmonary fibrosis, Cell. Mol. Life Sci., 2021, vol. 78, no. 5, pp. 2031–2057. https://doi.org/10.1007/s00018-020-03693-7

Poetsch, M.S., Strano, A., and Guan, K., Human induced pluripotent stem cells: From cell origin, genomic stability, and epigenetic memory to translational medicine, Stem Cells, 2022, vol. 40, no. 6, pp. 546–555. https://doi.org/10.1093/stmcls/sxac020

Ponnusamy, L., Mahalingaiah, P.K.S., and Singh, K.P., Epigenetic reprogramming and potential application of epigenetic-modifying drugs in acquired chemotherapeutic resistance, Adv. Clin. Chem., 2020, vol. 94, pp. 219–259. https://doi.org/10.1016/bs.acc.2019.07.011

Prabahar A.A., Investigation Into the Potential Prospects of Induced Pluripotent Stem Cells, J. Regener. Biol. Med., 2023, vol. 5, pp. 251–277. https://doi.org/10.37191/mapsci-2582-385x-5(4)-136

Radwan, I.A., Rady, D., Abbass, M.M.S., El Moshy, S., Abubakr, N., Dörfer, C.E., and Fawzy El-Sayed, K.M., Induced pluripotent stem cells in dental and nondental tissue regeneration: A review of an unexploited potential, Stem Cells Int., 2020, vol. 2020, p. 1941629. https://doi.org/10.1155/2020/1941629

Reddy, P., Vilella, F., Belmonte, J.C.I., and Simón, C., Use of customizable nucleases for gene editing and other novel applications, Genes, 2020, vol. 11, no. 9, p. 976. https://doi.org/10.3390/genes11090976

Reissmann, S. and Filatova, M.P., New generation of cell-penetrating peptides: Functionality and potential clinical application, J. Peptide Sci., 2021, vol. 27, no. 5, p. 3300. https://doi.org/10.1002/psc.3300

Rohner, E., Yang, R., Foo, K.S., Goedel, A., and Chien, K.R., Unlocking the promise of mRNA therapeutics, Nat. Biotechnol., 2022, vol. 40, no. 11, pp. 1586–1600. https://doi.org/10.1038/s41587-022-01491-z

Rossi, F., Noren, H., Jove, R., Beljanski, V., and Grinnemo, K.H., Differences and similarities between cancer and somatic stem cells: Therapeutic implications, Stem Cell Res. Ther., 2020, vol. 11, no. 1, p. 489. https://doi.org/10.1186/s13287-020-02018-6

Sahin, U., Karikó, K., and Türeci, Ö., MRNA-based therapeutics-developing a new class of drugs, Nat. Rev. Drug Discovery, 2014, vol. 13, no. 10, pp. 759–780. https://doi.org/10.1038/nrd4278

Saiding, Q., Zhang, Z., Chen, S., Xiao, F., Chen, Y., Li, Y., Zhen, X., Khan, M.M., Chen, W., Koo, S., Kong, N., and Tao, W., Nano-bio interactions in mRNA nanomedicine: Challenges and opportunities for targeted mRNA delivery, Adv. Drug Delivery Rev., 2023, vol. 203, p. 115116. https://doi.org/10.1016/j.addr.2023.115116

Saraswat, P., Chaturvedi, A., and Ranjan, R., Zinc Finger Nuclease (ZFNs) and Transcription Activator-like Effector Nucleases (TALENs) Based Genome Editing in Enhancement of Anticancer Activity of Plants, in Plant-Derived Anticancer Drugs in the Omics Era: Biosynthesis, Functions, and Applications, 2023, pp. 1–13. https://doi.org/10.1201/9781003377412-11

Savenkova, D.A., Makarova, A.L.A., Shalik, I.K., and Yudkin, D.V., miRNA pathway alteration in response to non-coding RNA delivery in viral vector-based gene therapy, Int. J. Mol. Sci., 2022, vol. 23, no. 23, p. 14954. https://doi.org/10.3390/ijms232314954

Sayed, N., Allawadhi, P., Khurana, A., Singh, V., Navik, U., Pasumarthi, S.K., Khurana, I., Banothu, A.K., Weiskirchen, R., and Bharani, K.K., Gene therapy: Comprehensive overview and therapeutic applications, Life Sci., 2022, vol. 294, p. 120375. https://doi.org/10.1016/j.lfs.2022.120375

Schlaeger, T.M., Daheron, L., Brickler, T.R., Entwisle, S., Chan, K., Cianci, A., DeVine, A., Ettenger, A., Fitzgerald, K., Godfrey, M., Gupta, D., McPherson, J., Malwadkar, P., Gupta, M., Bell, B., Doi, A., Jung, N., Li, X., Lynes, M.S., et al., A comparison of non-integrating reprogramming methods, Nat. Biotechnol., 2015, vol. 33, no. 1, pp. 58–63. https://doi.org/10.1038/nbt.3070

Schmidt, C., Pacher, M., and Puchta, H., DNA break repair in plants and its application for genome engineering, Methods Mol. Biol., 2019, vol. 1864, pp. 237–266. https://doi.org/10.1007/978-1-4939-8778-8_17

Scudellari, M., How iPS cells changed the world, Nature, 2016, vol. 534, no. 7607, pp. 310–312. https://doi.org/10.1038/534310a

Shah, S., Ghosh, D., Otsuka, T., and Laurencin, C.T., Classes of Stem Cells: From Biology to Engineering, Regener. Eng. Transl. Med., 2023, vol. 10, pp. 309–322. https://doi.org/10.1007/s40883-023-00317-x

Shakirova, K.M., Ovchinnikova, V.Y., and Dashinimaev, E.B., Cell reprogramming with CRISPR/Cas9 based transcriptional regulation systems, Front. Bioeng. Biotechnol., 2020, vol. 8, p. 882. https://doi.org/10.3389/fbioe.2020.00882

Shalaby, K., Aouida, M., and El-Agnaf, O., Tissue-specific delivery of crispr therapeutics: Strategies and mechanisms of non-viral vectors, Int. J. Mol. Sci., 2020, vol. 21, no. 19, p. 7353. https://doi.org/10.3390/ijms21197353

Shamshirgaran, Y., Liu, J., Sumer, H., Verma, P.J., and Taheri-Ghahfarokhi, A., Tools for Efficient Genome Editing; ZFN, TALEN, and CRISPR, Methods Mol. Biol., 2022, vol. 2495, pp. 29–46. https://doi.org/10.1007/978-1-0716-2301-5_2

Shamsian, A., Sahebnasagh, R., Norouzy, A., Hussein, S.H., Ghahremani, M.H., and Azizi, Z., Cancer cells as a new source of induced pluripotent stem cells, Stem Cell Res. Ther., 2022, vol. 13, no. 1, p. 459. https://doi.org/10.1186/s13287-022-03145-y

Shanak, S. and Helms, V., DNA methylation and the core pluripotency network, Dev. Biol., 2020, vol. 464, no. 2, pp. 145–160. https://doi.org/10.1016/j.ydbio.2020.06.001

Sharp, B., Rallabandi, R., and Devaux, P., Advances in RNA viral vector technology to reprogram somatic cells: the Paramyxovirus wave, Mol. Diagn. Ther., 2022, vol. 26, no. 4, pp. 353–367. https://doi.org/10.1007/s40291-022-00599-x

Shevyrev, D., Tereshchenko, V., Berezina, T.N., and Rybtsov, S., Hematopoietic stem cells and the immune system in development and aging, Int. J. Mol. Sci., 2023, vol. 24, no. 6, p. 5862. https://doi.org/10.3390/ijms24065862

Shi, G. and Jin, Y., Role of Oct4 in maintaining and regaining stem cell pluripotency, Stem Cell Res. Ther., 2010, vol. 1, no. 5, p. 39. https://doi.org/10.1186/scrt39

Silva, M.C. and Haggarty, S.J., Human pluripotent stem cell–derived models and drug screening in CNS precision medicine, Ann. N. Y. Acad. Sci., 2020, vol. 1471, no. 1, pp. 18–56. https://doi.org/10.1111/nyas.14012

Simpson, D.J., Olova, N.N., and Chandra, T., Cellular reprogramming and epigenetic rejuvenation, Clin. Epigenet., 2021, vol. 13, no. 1, p. 170. https://doi.org/10.1186/s13148-021-01158-7

Singh, R., Chandel, S., Dey, D., Ghosh, A., Roy, S., Ravichandiran, V., and Ghosh, D., Epigenetic modification and therapeutic targets of diabetes mellitus, Biosci. Rep., 2020, vol. 40, no. 9, p. BSR20202160. https://doi.org/10.1042/BSR20202160

Sohn, S., Van Buskirk, M., Buckenmeyer, M.J., Londono, R., and Faulk, D., Whole organ engineering: Approaches, challenges, and future directions, Appl. Sci., 2020, vol. 10, no. 12, p. 4277. https://doi.org/10.3390/app10124277

Song, M., Paul, S., Lim, H., Dayem, A.A., and Cho, S.G., Induced pluripotent stem cell research: A revolutionary approach to face the challenges in drug screening, Arch. Pharm. Res., 2012, vol. 35, no. 2, pp. 245–260. https://doi.org/10.1007/s12272-012-0205-9

Stricker, S.H. and Götz, M., Epigenetic regulation of neural lineage elaboration: Implications for therapeutic reprogramming, Neurobiol. Dis., 2021, vol. 148, p. 105174. https://doi.org/10.1016/j.nbd.2020.105174

Subramanyam, D., Cellular reprogramming – Turning the clock back: Nobel Prize in Physiology or Medicine, 2012, Resonance, 2013, vol. 18, no. 6, pp. 514–521. https://doi.org/10.1007/s12045-013-0069-4

Sullivan, S., Stacey, G.N., Akazawa, C., Aoyama, N., Baptista, R., Bedford, P., Bennaceur Griscelli, A., Chandra, A., Elwood, N., Girard, M., Kawamata, S., Hanatani, T., Latsis, T., Lin, S., Ludwig, T.E., Malygina, T., Mack, A., Mountford, J.C., Noggle, S., et al., Quality control guidelines for clinical-grade human induced pluripotent stem cell lines, Regener. Med., 2018, vol. 13, no. 7, pp. 859–866. https://doi.org/10.2217/rme-2018-0095

Sun, L., Fu, X., Ma, G., and Hutchins, A.P., Chromatin and Epigenetic Rearrangements in Embryonic Stem Cell Fate Transitions, Front. Cell Dev. Biol., 2021, vol. 9, p. 637309. https://doi.org/10.3389/fcell.2021.637309

Syed, Z.A., Zhang, L., and Ten Hagen, K.G., In vivo models of mucin biosynthesis and function, Adv. Drug Deliv. Rev., 2022, vol. 184, p. 114182. https://doi.org/10.1016/j.addr.2022.114182

Takahashi, K. and Yamanaka, S., Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, 2006, vol. 126, no. 4, pp. 663–676. https://doi.org/10.1016/j.cell.2006.07.024

Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S., Induction of pluripotent stem cells from adult human fibroblasts by defined factors, Cell, 2007, vol. 131, no. 5, pp. 861–872. https://doi.org/10.1016/j.cell.2007.11.019

Tarawneh, R. and Holtzman, D.M., The clinical problem of symptomatic Alzheimer disease and mild cognitive impairment, Cold Spring Harbor Perspect. Med., 2012, vol. 2, no. 5, p. a006148. https://doi.org/10.1101/cshperspect.a006148

Thakore, P.I., Black, J.B., Hilton, I.B., and Gersbach, C.A., Editing the epigenome: Technologies for programmable transcription and epigenetic modulation, Nat. Methods, 2016, vol. 13, no. 2, pp. 127–137. https://doi.org/10.1038/nmeth.3733

Ulasov, A.V., Rosenkranz, A.A., and Sobolev, A.S., Transcription factors: Time to deliver, J. Controlled Release, 2018, vol. 269, pp. 24–35. https://doi.org/10.1016/j.jconrel.2017.11.004

van Bueren, M.A.E. and Janssen, A., The impact of chromatin on double-strand break repair: Imaging tools and discoveries, DNA Repair, 2024, vol. 133, p. 103592. https://doi.org/10.1016/j.dnarep.2023.103592

van der Oost, J. and Patinios, C., The genome editing revolution, Trends Biotechnol., 2023, vol. 41, no. 3, pp. 396–409. https://doi.org/10.1016/j.tibtech.2022.12.022

Vargas, J.E., Chicaybam, L., Stein, R.T., Tanuri, A., Delgado-Cañedo, A., and Bonamino, M.H., Retroviral vectors and transposons for stable gene therapy: Advances, current challenges and perspectives, J. Transl. Med., 2016, vol. 14, no. 1, p. 288. https://doi.org/10.1186/s12967-016-1047-x

Viegas, J.S.R., Bentley, M.V.L.B., and Vicentini, F.T.M. de C., Challenges to perform an efficiently gene therapy adopting non-viral vectors: Melanoma landscape, J. Drug Delivery Sci. Technol., 2022, vol. 78, p. 103964. https://doi.org/10.1016/j.jddst.2022.103964

Wang, H., Yang, Y., Liu, J., and Qian, L., Direct cell reprogramming: Approaches, mechanisms and progress, Nat. Rev. Mol. Cell Biol., 2021, vol. 22, no. 6, pp. 410–424. https://doi.org/10.1038/s41580-021-00335-z

Wang, X., Yin, L., Wen, Y., and Yuan, S., Mitochondrial regulation during male germ cell development, Cell. Mol. Life Sci., 2022, vol. 79, no. 2, p. 91. https://doi.org/10.1007/s00018-022-04134-3

Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J., and Campbell, K.H.S., Viable offspring derived from fetal and adult mammalian cells, Nature, 1997, vol. 385, no. 6619, pp. 810–813. https://doi.org/10.1038/385810a0

Xiao, W., Zhou, Q., Wen, X., Wang, R., Liu, R., Wang, T., Shi, J., Hu, Y., and Hou, J., Small-molecule inhibitors overcome epigenetic reprogramming for cancer therapy, Front. Pharmacol., 2021, vol. 12, p. 702360. https://doi.org/10.3389/fphar.2021.702360

Yahya, E.B. and Alqadhi, A., M. Recent trends in cancer therapy: A review on the current state of gene delivery, Life Sci., 2021, vol. 269, p. 119087. https://doi.org/10.1016/j.lfs.2021.119087

Yamanaka, S. and Blau, H.M., Nuclear reprogramming to a pluripotent state by three approaches, Nature, 2010, vol. 465, no. 7299, pp. 704–712. https://doi.org/10.1038/nature09229

Yan, Y., Liu, X.Y., Lu, A., Wang, X.Y., Jiang, L.X., and Wang, J.C., Non-viral vectors for RNA delivery, J. Controlled Release, 2022, vol. 342, pp. 241–279. https://doi.org/10.1016/j.jconrel.2022.01.008

Yang, J.H., Hayano, M., Griffin, P.T., Amorim, J.A., Bonkowski, M.S., Apostolides, J.K., Salfati, E.L., Blanchette, M., Munding, E.M., Bhakta, M., Chew, Y.C., Guo, W., Yang, X., Maybury-Lewis, S., Tian, X., Ross, J.M., Coppotelli, G., Meer, M.V., Rogers-Hammond, R., et al., Loss of epigenetic information as a cause of mammalian aging, Cell, 2023, vol. 186, no. 2, pp. 305–326. https://doi.org/10.1016/j.cell.2022.12.027

Yin, Y., Chen, H., Wang, Y., Zhang, L., and Wang, X., Roles of extracellular vesicles in the aging microenvironment and age-related diseases, J. Extracell. Vesicles, 2021, vol. 10, no. 12, p. 12154. https://doi.org/10.1002/jev2.12154

Yu, A.M., Choi, Y.H., and Tu, M.J., RNA drugs and RNA targets for small molecules: Principles, progress, and challenges, Pharmacol. Rev., 2020, vol. 72, no. 4, pp. 862–898. https://doi.org/10.1124/pr.120.019554

Zahumenska, R., Nosal, V., Smolar, M., Okajcekova, T., Skovierova, H., Strnadel, J., and Halasova, E., Induced pluripotency: A powerful tool for in vitro modelling, Int. J. Mol. Sci., 2020, vol. 21, no. 23, p. 8910. https://doi.org/10.3390/ijms21238910

Zakrzewski, W., Dobrzyński, M., Szymonowicz, M., and Rybak, Z., Stem cells: Past, present, and future, Stem Cell Res. Ther., 2019, vol. 10, no. 1, p. 68. https://doi.org/10.1186/s13287-019-1165-5

Zaret, K.S., Pioneer Transcription Factors Initiating Gene Network Changes, Annu. Rev. Genet., 2020, vol. 54, pp. 367–385. https://doi.org/10.1146/annurev-genet-030220-015007

Zhang, J., Liu, Y., Chen, Y., Yuan, L., Liu, H., Wang, J., Liu, Q., and Zhang, Y., Adipose-Derived stem cells: Current applications and future directions in the regeneration of multiple tissues, Stem Cells Int., 2020, vol. 2020, p. 8810813. https://doi.org/10.1155/2020/8810813

Zhang, W., Qu, J., Liu, G.H., and Belmonte, J.C.I., The ageing epigenome and its rejuvenation, Nat. Rev. Mol. Cell Biol., 2020, vol. 21, no. 3, pp. 137–150. https://doi.org/10.1038/s41580-019-0204-5

Zhao, Z., Anselmo, A.C., and Mitragotri, S., Viral vector-based gene therapies in the clinic, Bioeng. Transl. Med., 2022, vol. 7, no. 1, p. 10258. https://doi.org/10.1002/btm2.10258

Zylicz, J.J., Defined Stem Cell Culture Conditions to Model Mouse Blastocyst Development, Curr. Protoc. Stem Cell Biol., 2020, vol. 52, p. 105. https://doi.org/10.1002/cpsc.105