Role of chromosomal structural rearrangements in creation of variability has been discussed widely over the years. During the past decade, advances in plant genome sequencing and bioinformatics tools led to the detection of more complex types of chromosome rearrangements that arise due to a single catastrophic event. Chromoanagenesis is the term used to describe these catastrophic events and it was initially found in cancer cells, and subsequently observed in a variety of other systems, including plants. Chromoanagenesis is induced by different interconnected mechanisms like micronucleation, breakagefusionbridge (BFB) cycles, and closed chain translocation. In this review we discuss the genesis, types, features, mechanisms and role of chromoanagenesis in plants for crop improvement and evolution.
Keywords: Chromosomes, Chromoanagenesis, Micronucleus, Chromosome rearrangement

Full text and supplemented materials
References
Aguilera, A. and Gómez-González, B., Genome instability: a mechanistic view of its causes and consequences, Nat. Rev. Genet., 2008, vol. 9, pp. 204–217. https://doi.org/10.1038/nrg2268
Alonge, M., Wang, X., Benoit, M., et al., Major impacts of widespread structural variation on gene expression and crop improvement in tomato, Cell, 2020, vol. 182, pp. 145–161.e23. https://doi.org/10.1016/j.cell.2020.05.021
Amundson, K.R., Ordoñez, B., Santayana, M., et al., Genomic Outcomes of Haploid Induction Crosses in Potato (Solanum tuberosum L.), Genetics, 2020, vol. 214, pp. 369–380. https://doi.org/10.1534/genetics.119.302843
Anand, R.P., Tsaponina, O., Greenwell, P.W., et al., Chromosome rearrangements via template switching between diverged repeated sequences, Genes Dev., 2014, vol. 28, pp. 2394–2406. https://doi.org/10.1101/gad.250258.114
Baca, S.C., Prandi, D., Lawrence, M.S., et al., Punctuated evolution of prostate cancer genomes, Cell, 2013, vol. 153, pp. 666–677. https://doi.org/10.1016/j.cell.2013.03.021
Bastiaanse, H., Zinkgraf, M., Canning, C., et al., A comprehensive genomic scan reveals gene dosage balance impacts on quantitative traits in Populus trees, Proc. Natl. Acad. Sci. U. S. A., 2019, vol. 116, pp. 13690–13699. https://doi.org/10.1073/pnas.1903229116
Bastiaanse, H., Henry, I.M., Tsai, H., et al., A systems genetics approach to deciphering the effect of dosage variation on leaf morphology in Populus, Plant Cell, 2021, vol. 33, pp. 940–960. https://doi.org/10.1093/plcell/koaa016
Blanc-Mathieu, R., Krasovec, M., Hebrard, M., et al., Population genomics of picophytoplankton unveils novel chromosome hypervariability, Sci. Adv., 2017, vol. 3, p. e1700239. https://doi.org/10.1126/sciadv.1700239
Carbonell-Bejerano, P., Royo, C., Torres-Pérez, R., et al., Catastrophic Unbalanced Genome Rearrangements Cause Somatic Loss of Berry Color in Grapevine, Plant Physiol., 2017, vol. 175, pp. 786–801. https://doi.org/10.1104/pp.17.00715
Crasta, K., Ganem, N.J., Dagher, R., et al., DNA breaks and chromosome pulverization from errors in mitosis, Nature, 2012, vol. 482, pp. 53–58. https://doi.org/10.1038/nature10802
Denais, C.M., Gilbert, R.M., Isermann, P., et al., Nuclear envelope rupture and repair during cancer cell migration, Science, 2016, vol. 352, pp. 353–358. https://doi.org/10.1126/science.aad7297
Dewhurst, S.M., Chromothripsis and telomere crisis: engines of genome instability, Curr. Opin. Genet. Dev., 2020, vol. 60, pp. 41–47. https://doi.org/10.1016/j.gde.2020.02.009
Di Meo, G.P., Perucatti, A., Chaves, R., et al., Cattle rob (1;29) originating from complex chromosome rearrangements as revealed by both banding and FISH-mapping techniques, Chromosome Res., 2006, vol. 14, pp. 649–655. https://doi.org/10.1007/s10577-006-1074-1
Doligez, A., Adam-Blondon, A.F., Cipriani, G., et al., An integrated SSR map of grapevine based on five mapping populations, Theor. Appl. Genet., 2006, vol. 113, pp. 369–382. https://doi.org/10.1007/s00122-006-0295-1
Ducos, A., Berland, H.M., Bonnet, N., et al., Chromosomal control of pig populations in France: 2002–2006 survey, Genet. Sel. Evol., 2007, vol. 39, p. 583. https://doi.org/10.1186/1297-9686-39-5-583
Fenech, M., Kirsch-Volders, M., Natarajan, A.T., et al., Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells, Mutagenesis, 2011, vol. 26, pp. 125–132. https://doi.org/10.1093/mutage/geq052
Fukami, M., Shima, H., Suzuki, E., et al., Catastrophic cellular events leading to complex chromosomal rearrangements in the germline, Clin. Genet., 2017, vol. 91, pp. 653–660. https://doi.org/10.1111/cge.12928
Guo, W., Comai, L., and Henry, I.M., Chromoanagenesis from radiation-induced genome damage in Populus, PLoS Genet., 2021, vol. 17, p. e1009735. https://doi.org/10.1371/journal.pgen.1009735
Guo, W., Comai, L., and Henry, I.M., Chromoanagenesis in plants: triggers, mechanisms, and potential impact, Trends Genet., 2023, vol. 39, pp. 34–45. https://doi.org/10.1016/j.tig.2022.08.003
Hastings, P.J., Ira, G., and Lupski, J.R., A microhomology-mediated break-induced replication model for the origin of human copy number variation, PLoS Genet., 2009, vol. 5, p. e1000327. https://doi.org/10.1371/journal.pgen.1000327
Hatch, E.M., Fischer, A.H., Deerinck, T.J., and Hetzer, M.W., Catastrophic nuclear envelope collapse in cancer cell micronuclei, Cell, 2013, vol. 154, pp. 47–60. https://doi.org/10.1016/j.cell.2013.06.007
Henry, I.M., Zinkgraf, M.S., Groover, A.T., and Comai, L., A system for dosage-based functional genomics in poplar, Plant Cell, 2015, vol. 27, pp. 2370–2383. https://doi.org/10.1105/tpc.15.00349
Hoffelder, D.R., Luo, L., Burke, N.A., et al., Resolution of anaphase bridges in cancer cells, Chromosoma, 2004, vol. 112, pp. 389–397. https://doi.org/10.1007/s00412-004-0284-6
Holland, A.J. and Cleveland, D.W., Chromoanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements, Nat. Med., 2012, vol. 18, pp. 1630–1638. https://doi.org/10.1038/nm.2988
Ibáñez, J., Muñoz-Organero, G., Zinelabidine, L.H., et al., Genetic origin of the grapevine cultivar Tempranillo, Am. J. Enol. Vitic., 2012, vol. 63, pp. 549–553. https://doi.org/10.5344/ajev.2012.12012
Isaac, O. and Thiemer, K., Biochemical studies on camomile components/III. In vitro studies about the antipeptic activity of (–)-alpha-bisabolol (author’s transl), Arzneimittelforschung, 1975, vol. 25, no. 9, pp. 1352–1354.
Itani, O.A., Flibotte, S., Dumas, K.J., et al., N -Ethyl- N -Nitrosourea (ENU) mutagenesis reveals an intronic residue critical for Caenorhabditis elegans 3′ splice site function in Vivo G3, Genes, Genomes, Genet., 2016, vol. 6, pp. 1751–1756. https://doi.org/10.1534/g3.116.028662
Klaasen, S.J., Truong, M.A., Van Jaarsveld, R.H., et al., Nuclear chromosome locations dictate segregation error frequencies, Nature, 2022, vol. 607, pp. 604–609. https://doi.org/10.1038/s41586-022-04938-0
Kloosterman, W.P. and Cuppen, E., Chromothripsis in congenital disorders and cancer: similarities and differences, Curr. Opin. Cell Biol., 2013, vol. 25, pp. 341–348. https://doi.org/10.1016/j.ceb.2013.02.008
Koltsova, A.S., Pendina, A.A., Efimova, O.A., et al., On the complexity of mechanisms and consequences of chromothripsis: An update, Front. Genet., 2019, vol. 10, p. 393. https://doi.org/10.3389/fgene.2019.00393
Korbel, J.O. and Campbell, P.J., Criteria for inference of chromothripsis in cancer genomes, Cell, 2013, vol. 152, pp. 1226–1236. https://doi.org/10.1016/j.cell.2013.02.023
Lee, J.A., Carvalho, C.M., and Lupski, J.R., A DNA Replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders, Cell, 2007, vol. 131, pp. 1235–1247. https://doi.org/10.1016/j.cell.2007.11.037
Liu, P., Erez, A., Nagamani, S.C.S., et al., Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements, Cell, 2011, vol. 146, pp. 889–903. https://doi.org/10.1016/j.cell.2011.07.042
Liu, S., Kwon, M., Mannino, M., et al., Nuclear envelope assembly defects link mitotic errors to chromothripsis, Nature, 2018, vol. 561, pp. 551–555. https://doi.org/10.1038/s41586-018-0534-z
Lu, P., Han, X., Qi, J., et al., Analysis of Arabidopsis genome-wide variations before and after meiosis and meiotic recombination by resequencing Landsberg erecta and all four products of a single meiosis, Genome Res., 2012, vol. 22, pp. 508–518. https://doi.org/10.1101/gr.127522.111
Ly, P., Brunner, S.F., Shoshani, O., et al., Chromosome segregation errors generate a diverse spectrum of simple and complex genomic rearrangements, Nat. Genet., 2019, vol. 51, pp. 705–715. https://doi.org/10.1038/s41588-019-0360-8
Maciejowski, J., Li, Y., Bosco, N., et al., Chromothripsis and kataegis induced by telomere crisis, Cell, 2015, vol. 163, pp. 1641–1654. https://doi.org/10.1016/j.cell.2015.11.054
Maciejowski, J. and De Lange, T., Telomeres in cancer: tumour suppression and genome instability, Nat. Rev. Mol. Cell Biol., 2017, vol. 18, pp. 175–186. https://doi.org/10.1038/nrm.2016.171
Maciejowski, J., Chatzipli, A., Dananberg, A., et al., APOBEC3-dependent kataegis and TREX1-driven chromothripsis during telomere crisis, Nat. Genet., 2020, vol. 52, pp. 884–890. https://doi.org/10.1038/s41588-020-0667-5
Mathieu, N., Pirzio, L., Freulet-Marrire, M.A., et al., Telomeres and chromosomal instability, Cell. Mol. Life Sci., 2004, vol. 61, pp. 641–656. https://doi.org/10.1007/s00018-003-3296-0
Meyer, T.J., Held, U., Nevonen, K.A., et al., The flow of the gibbon LAVA element is facilitated by the LINE-1 retrotransposition machinery, Genome Biol. Evol., 2016, vol. 8, pp. 3209–3225. https://doi.org/10.1093/gbe/evw224
Meyerson, M. and Pellman, D., Cancer genomes evolve by pulverizing single chromosomes, Cell, 2011, vol. 144, pp. 9–10. https://doi.org/10.1016/j.cell.2010.12.025
Migliaro, D., De Nardi, B., Vezzulli, S., and Crespan, M., An upgraded core set of 11 SSR markers for grapevine cultivar identification: The case of berry-color mutants, Am. J. Enol. Vitic., 2017, vol. 68, pp. 496–498. https://doi.org/10.5344/ajev.2017.17048
Morishita, M., Muramatsu, T., Suto, Y., et al., Chromothripsis-like chromosomal rearrangements induced by ionizing radiation using proton microbeam irradiation system, Oncotarget, 2016, vol. 7, pp. 10182–10192. https://doi.org/10.18632/oncotarget.7186
Nik-Zainal, S., Van Loo, P., Wedge, D.C., et al., The life history of 21 breast cancers, Cell, 2012, vol. 149, pp. 994–1007. https://doi.org/10.1016/j.cell.2012.04.023
Otsuka, S., Bui, K.H., Schorb, M., et al., Nuclear pore assembly proceeds by an inside-out extrusion of the nuclear envelope, Elife, 2016, vol. 5, p. e19071. https://doi.org/10.7554/eLife.19071
Pellestor, F., Chromoanagenesis: cataclysms behind complex chromosomal rearrangements, Mol. Cytogenet., 2019, vol. 12, pp. 1–12. https://doi.org/10.1186/s13039-019-0415-7
Pellestor, F., Chromothripsis: how does such a catastrophic event impact human reproduction?, Hum. Reprod., 2014, vol. 29, pp. 388–393. https://doi.org/10.1093/humrep/deu003
Pellestor, F., Gaillard, J., Schneider, A., et al., Chromoanagenesis, the mechanisms of a genomic chaos, Semin. Cell Dev. Biol., 2022, vol. 123, pp. 90–99. https://doi.org/10.1016/j.semcdb.2021.01.004
Rodriguez-Zaccaro, F.D., Henry, I.M., and Groover, A., Genetic regulation of vessel morphology in Populus, Front. Plant Sci., 2021, vol. 12, p. 705596. https://doi.org/10.3389/fpls.2021.705596
Romanenko, S., Serdyukova, N., Perelman, P., et al., Intrachromosomal rearrangements in rodents from the perspective of comparative region-specific painting, 2017, Genes, vol. 8, p. 215. https://doi.org/10.3390/genes8090215
Schubert, I., Chromosome evolution, Curr. Opin. Plant B-iol., 2007, vol. 10, pp. 109–115. https://doi.org/10.1016/j.pbi.2007.01.001
Schütze, D.M., Krijgsman, O., Snijders, P.J.F., et al., Immortalization capacity of HPV types is inversely related to chromosomal instability, Oncotarget, 2016, vol. 7, pp. 37608–37621. https://doi.org/10.18632/oncotarget.8058
Sebastian, P., Schaefer, H., Telford, I.R.H., and Renner, S.S., Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia, Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, pp. 14269–14273. https://doi.org/10.1073/pnas.1005338107
Stephens, P.J., Greenman, C.D., Fu, B., et al., Massive genomic rearrangement acquired in a single catastrophic event during cancer development, Cell, 2011, vol. 144, pp. 27–40. https://doi.org/10.1016/j.cell.2010.11.055
Storchová, Z. and Kloosterman, W.P., The genomic characteristics and cellular origin of chromothripsis, Curr. Opin. Cell Biol., 2016, vol. 40, pp. 106–113. https://doi.org/10.1016/j.ceb.2016.03.003
Terradas, M., Martín, M., Tusell, L., and Genescà, A., DNA lesions sequestered in micronuclei induce a local defective-damage response, DNA Repair, 2009, vol. 8, pp. 1225–1234. https://doi.org/10.1016/j.dnarep.2009.07.004
Terradas, M., Martín, M., Hernández, L., et al., Nuclear envelope defects impede a proper response to micronuclear DNA lesions, Mutat. Res., Fundam. Mol. Mech. Mutagen., 2012, vol. 729, pp. 35–40. https://doi.org/10.1016/j.mrfmmm.2011.09.003
Weckselblatt, B. and Rudd, M.K., Human structural variation: mechanisms of chromosome rearrangements, Trends Genet., 2015, vol. 31, pp. 587–599. https://doi.org/10.1016/j.tig.2015.05.010
Yang, L., Koo, D.H., Li, D., et al., Next-generation sequencing, FISH mapping and synteny-based modeling reveal mechanisms of decreasing dysploidy in Cucumis, Plant J., 2014, vol. 77, pp. 16–30. https://doi.org/10.1111/tpj.12355
Yi, K. and Ju, Y.S., Patterns and mechanisms of structural variations in human cancer, Exp. Mol. Med., 2018, vol. 50, pp. 1–11. https://doi.org/10.1038/s12276-018-0112-3
Zhang, F., Khajavi, M., Connolly, A.M., Towne, C.F., Batish, S.D. and Lupski, J.R., The DNA replication FoSTeS/MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans, Nat. Genet., 2009, vol. 41, pp. 849–853.
Zhao, Q., Meng, Y., Wang, P., et al., Reconstruction of ancestral karyotype illuminates chromosome evolution in the genus Cucumis, Plant J., 2021, vol. 107, pp. 1243–1259. https://doi.org/10.1111/tpj.15381