TSitologiya i Genetika 2025, vol. 59, no. 1, 72-73
Cytology and Genetics 2025, vol. 59, no. 1, 63–70, doi: https://www.doi.org/10.3103/S0095452725010074

Co-overexpression of Genes RFE1, GND1, and RIB6 Enhances Riboflavin Production in Yeast Candida famata

Liu W., Tsyrulnyk A., Dmytruk K., Fedorovych D., Kang Y., Sibirny A.

  1. Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov St., 14/16, Lviv 79005, Ukraine
  2. Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & School of Basic Medical Science & Institution of One Health Research, Guizhou Medical University, Guiyang, China
  3. Institute of Biology and Biotechnology, University of Rzeszow, Zelwerowicza 4, Rzeszow 35­601, Poland

Riboflavin (vitamin B2) is an essential compound for the nutrition of living organisms, serving as a precursor of coenzymes flavin mononucleotide and flavin adenine dinucleotide, which are involved in numerous enzymatic reactions mainly in oxidative metabolism. The yeast Candida famata is a natural riboflavin­producing species, which are able to oversynthesis riboflavin under conditions of iron starvation. The aim of this study was to construct recombinant C. famata strains with increased riboflavin production by the simultaneous overexpression of the three genes: RFE1, GND1, and RIB6, which encode riboflavin excretase, 6­phosphogluconate dehydrogenase and 3,4­dihydroxy­2­butanone­4­phosphate synthase, respectively. The ex­pression of various combinations of two genes, as well as the co­expression of all three genes, resulted in increased riboflavin production in C. famata VKM Y­9 in different media. The strains engineered for the co­overexpression of all three genes exhibited up to a 3.3­fold increase in riboflavin production by the fifth day of cultivation in cheese whey, compared to the parental strain.

Keywords: Candida famata, riboflavin, vitamin B2, cheese whey, yeast

TSitologiya i Genetika
2025, vol. 59, no. 1, 72-73

Current Issue
Cytology and Genetics
2025, vol. 59, no. 1, 63–70,
doi: 10.3103/S0095452725010074

Full text and supplemented materials

References

Abbas, C.A. and Sibirny, A.A., Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers, Microbiol. Mol. Biol. Rev., 2011, vol. 75, pp. 321–360. https://doi.org/10.1128/MMBR.00030-10

Cavka, A. and Jönsson, L.J., Comparison of the growth of filamentous fungi and yeasts in lignocellulose-derived media, Biocatal. Agric. Biotechnol., 2014, vol. 3, pp. 197–204. https://doi.org/10.1016/j.bcab.2014.04.003

Ding, Q. and Ye, C., Microbial cell factories based on filamentous bacteria, yeasts, and fungi, Microb. Cell Fact., 2023, vol. 22, p. 20. https://doi.org/10.1186/s12934-023-02025-1

Dmytruk, K.V. and Sibirny, A.A., Candida famata (Candida flareri), Yeast, 2012, vol. 29, pp. 453–458. https://doi.org/10.1002/yea.2929

Dmytruk, K.V., Abbas, C.A., Voronovsky, A.Y., Kshanovska, B.V., Sybirna, K.A., and Sybirny, A.A., Cloning of structural genes involved in riboflavin synthesis of the yeast Candida famata, Ukr. Biokhim. Zh. (1999), 2004, vol. 76, pp. 78–87.

Dmytruk, K.V., Voronovsky, A.Y., and Sibirny, A.A., Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments, Curr. Genet., 2006, vol. 50, pp. 183–191. https://doi.org/10.1007/s00294-006-0083-0

Dmytruk, K.V., Yatsyshyn, V.Y., Sybirna, N.O., Fedorovych, D.V., and Sibirny, A.A., Metabolic engineering and classic selection of the yeast Candida famata (Candida flareri) for construction of strains with enhanced riboflavin production, Metab. Eng., 2011, vol. 13, pp. 82–88. https://doi.org/10.1016/j.ymben.2010.10.005

Dmytruk, K., Lyzak, O., Yatsyshyn, V., Kluz, M., Sibirny, V., Puchalski, C., and Sibirny, A., Construction and fed-batch cultivation of Candida famata with enhanced riboflavin production, J. Biotechnol., 2014, vol. 172, pp. 11–17. https://doi.org/10.1016/j.jbiotec.2013.12.005

Dmytruk, K.V., Ruchala, J., Fedorovych, D.V., Ostapiv, R.D., and Sibirny, A.A., Modulation of the purine pathway for riboflavin production in flavinogenic recombinant strain of the yeast Candida famata, Biotechnol. J., 2020, vol. 15, p. 1900468. https://doi.org/10.1002/biot.201900468

Dzanaeva, L.S., Wojdyła, D., Fedorovych, D.V., Ruchala, J., Dmytruk, K.V., and Sibirny, A.A., Riboflavin overproduction on lignocellulose hydrolysate by the engineered yeast Candida famata, FEMS Yeast Res., 2024, vol. 24, p. foae020. https://doi.org/10.1093/femsyr/foae020

Fischer, M., Römisch, W., Illarionov, B., Eisenreich, W., and Bacher, A., Structures and reaction mechanisms of riboflavin synthases of eubacterial and archaeal origin, Biochem. Soc. Trans., 2005, vol. 33, pp. 780–784. https://doi.org/10.1042/BST0330780

Kato, T. and Park, E.Y., Riboflavin production by Ashbya gossypii, Biotechnol. Lett., 2012, vol. 34, pp. 611–618. https://doi.org/10.1007/s10529-011-0833-z

Liu, S., Hu, W., Wang, Z., and Chen, T., Production of riboflavin and related cofactors by biotechnological processes, Microb. Cell Fact., 2020, vol. 19, p. 31. https://doi.org/10.1186/s12934-020-01302-7

Petrovska, Y., Lyzak, O., Ruchala, J., Dmytruk, K., and Sibirny, A., Co-overexpression of RIB1 and RIB6 increases riboflavin production in the yeast Candida famata, Fermentation, 2022, vol. 8, p. 141. https://doi.org/10.3390/fermentation8040141

Riboflavin market size, share 2023-2031, n.d. https://straitsresearch.com/report/riboflavin-market. Accessed September 23, 2024.

Ruchala, J., Andreieva, Y.A., Tsyrulnyk, A.O., Sobchuk, S.M., Najdecka, A., Wen, L., Kang, Y., Dmytruk, O.V., Dmytruk, K.V., Fedorovych, D.V., and Sibirny, A.A., Cheese whey supports high riboflavin synthesis by the engineered strains of the flavinogenic yeast Candida famata, Microb. Cell Fact., 2022, vol. 21, p. 161. https://doi.org/10.1186/s12934-022-01888-0

Sambrook, J., Fritsch, E.F., Maniatis, T., Russell, D.W., and Green, M.R., Molecular Cloning: a Laboratory Manual, New York: Cold Spring Harbor Lab. Press, Cold Spring Harbor, 1989.

Schwechheimer, S.K., Park, E.Y., Revuelta, J.L., Becker, J., and Wittmann, C., Biotechnology of riboflavin, Appl. Microbiol. Biotechnol., 2016, vol. 100, pp. 2107–2119. https://doi.org/10.1007/s00253-015-7256-z

Sibirny, A.A., Metabolic engineering of non-conventional yeasts for construction of the advanced producers of biofuels and high-value chemicals, BBA Adv., 2023, vol. 3, p. 100071. https://doi.org/10.1016/j.bbadva.2022.100071

Stahmann, K.-P., Revuelta, J.L., and Seulberger, H., Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production, Appl. Microbiol. Biotechnol., 2000, vol. 53, pp. 509–516. https://doi.org/10.1007/s002530051649

Tsyrulnyk, A.O., Andreieva, Y.A., Ruchala, J., Fayura, L.R., Dmytruk, K.V., Fedorovych, D.V., and Sibirny, A.A., Expression of yeast homolog of the mammal BCRP gene coding for riboflavin efflux protein activates vitamin B2 production in the flavinogenic yeast Candida famata, Yeast, 2020, vol. 37, pp. 467–473. https://doi.org/10.1002/yea.3470

Tsyrulnyk, A.O., Fedorovych, D.V., Sobchuk, S.M., Dmytruk, K.V., and Sibirny, A.A., Lactose inducible expression of transcription factor gene SEF1 increases riboflavin production in the yeast Candida famata, Mikrobiol. Zh., 2021, vol. 83, pp. 3–10. https://doi.org/10.15407/microbiolj83.05.003

Vincenzi, A., Maciel, M.J., Burlani, E.L., Oliveira, E.C., Volpato, G., Lehn, D.N., and Souza, C.F.V., Ethanol bio-production from Ricotta cheese whey by several strains of the yeast Kluyveromyces, Am. J. Food Technol., 2014, vol. 9, pp. 281–291. https://doi.org/10.3923/ajft.2014.281.291

Voronovsky, A., Abbas, C., Fayura, L., Kshanovska, B., Dmytruk, K., Sybirna, K., abd Sibirny, A., Development of a transformation system for the flavinogenic yeast Candida famata, FEMS Yeast Res., 2002, vol. 2, pp. 381–388. https://doi.org/10.1016/S1567-1356(02)00112-5

Voronovsky, A.Y., Abbas, C.A., Dmytruk, K.V., Ishchuk, O.P., Kshanovska, B.V., Sybirna, K.A., Gaillardin, C., and Sibirny, A.A., Candida famata (Debaryomyces hansenii) DNA sequences containing genes involved in riboflavin synthesis, Yeast, 2004, vol. 21, pp. 1307–1316. https://doi.org/10.1002/yea.1182

Wang, Y., Liu, L., Jin, Z., and Zhang, D., Microbial cell factories for green production of vitamins, Front. Bioeng. Biotechnol., 2021, vol. 9, p. 661562. https://doi.org/10.3389/fbioe.2021.661562

You, J., Yang, C., Pan, X., Hu, M., Du, Y., Osire, T., Yang, T., and Rao, Z., Metabolic engineering of Bacillus subtilis for enhancing riboflavin production by alleviating dissolved oxygen limitation, Bioresour. Technol., 2021, vol. 333, p. 125228. https://doi.org/10.1016/j.biortech.2021.125228