TSitologiya i Genetika 2025, vol. 59, no. 2, 31-43
Cytology and Genetics 2025, vol. 59, no. 2, 168–178, doi: https://www.doi.org/10.3103/S0095452725020045

Distinct functions of the PH domain in BCR/ABL p210 isoform: interaction with cytoskeletal and membrane remodeling proteins

Gurianov D.S., Kravchuk I.V., Antonenko S.V., Dybkov M.V., Tesliuk M.G., Telegeev G.D.

  • Institute of Molecular Biology and Genetics NAS of Ukraine, Kyiv, 03143

SUMMARY. The BCR/ABL fusion protein, generated by the Philadelphia chromosome translocation, drives chronic myelogenous leukemia (CML) and other myeloproliferative disorders. The p210 isoform includes a pleckstrin homology (PH) domain absent in the p190 isoform, which is linked to acute lymphoblastic leukemia (ALL). This structural difference may underlie the distinct subcellular localization and signaling profiles of the two isoforms. Here, we investigate the role of the PH domain of BCR in interactions with cortactin and FBP17, proteins involved in cytoskeletal remodeling and membrane dynamics. Using GST-pulldown assays and western blotting, we demonstrated direct interactions between the PH domain of BCR and both cortactin and FBP17. Colocalization studies, supported by confocal and STED microscopy, revealed that cortactin colocalizes with the PH domain of BCR in the centrosomal and perimembrane regions of cells. Notably, the SH3 domain of cortactin was not required for this interaction, but full-length cortactin was essential, suggesting that other domains mediate binding. These findings highlight the role of the PH domain in directing BCR/ABL to the centrosome, where it interacts with cortactin to potenti-ally influence actin dynamics and vesicular trafficking. This centrosomal localization may spatially restrict the constitutive tyrosine kinase activity of ABL, contributing to the less aggressive phenotype of p210-associated CML compared to p190-driven ALL. Understanding the role of the PH domain as a key structural difference between p210 and p190 is critical for elucidating the molecular basis of BCR/ABL-mediated leukemogenesis. Future studies will explore the phosphorylation of cortactin and FBP17 by ABL kinase and the domains responsible for these interactions.

Keywords: BCR/ABL, cortactin, FBP17, PH domain, CML, GST-pulldown, protein-protein interactions

TSitologiya i Genetika
2025, vol. 59, no. 2, 31-43

Current Issue
Cytology and Genetics
2025, vol. 59, no. 2, 168–178,
doi: 10.3103/S0095452725020045

Full text and supplemented materials

Free full text: PDF  

References

Antonenko, S.V., Gurianov, D.S., Kravchuk, I.V., Dybkov, M.V., Shvachko, L.P., and Telegeev, G.D., Role of BCR and FNBP1 proteins in phagocytosis as a model of membrane rearrangements with chronic myelogenous leukemia, Cytol. Genet., 2023, vol. 57, no. 4, pp. 291–297. https://doi.org/10.3103/S0095452723040023/METRICS

Ben-Neriah, Y., Daley, G.Q., Mes-Masson, A.M., Witte, O.N., and Baltimore, D., The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene, Science, 1986, vol. 233, no. 4760, pp. 212–214. https://doi.org/10.1126/science.3460176

Birnboim, H.C. and Doly, J., A rapid alkaline extraction procedure for screening recombinant plasmid DNA, Nucleic Acids Res., 1979, vol. 7, no. 6, pp. 1513–1523. https://doi.org/10.1093/nar/7.6.1513

Buday, L. and Downward, J., Roles of cortactin in tumor pathogenesis, Biochim. Biophys. Acta, 2007, vol. 1775, no. 2, pp. 263–273. https://doi.org/10.1016/j.bbcan.2006.12.002

Conduit, P.T., Wainman, A., and Raff, J.W., Centrosome function and assembly in animal cells, Nat. Rev. Mol. Cell Biol., 2015, vol. 16, no. 10, pp. 611–624. https://doi.org/10.1038/nrm4062

Cosen-Binker, L.I. and Kapus, A., Cortactin: The gray eminence of the cytoskeleton, Physiology, 2006, vol. 21, no. 5, pp. 352–361. https://doi.org/10.1152/physiol.00012.2006

Dowhan, D.H., Purification and concentration of nucleic acids, Curr. Protoc., 2008, vol. 00, no. 1, pp. 5.2.1–5.2.19. https://doi.org/10.1002/9780470089941.ET0502S00

Emilia, G., Luppi, M., Marasca, R., and Torelli, G., Relationship between BCR/ABL fusion proteins and leukemia phenotype, Blood, 1997, vol. 89, no. 10, pp. 3889–3889. https://doi.org/10.1182/blood.V89.10.3889.3889_3889_3889

Ernst, O. and Zor, T., Linearization of the bradford protein assay, JoVE, 2010, vol. 38, p. e1918. https://doi.org/10.3791/1918

Froger, A. and Hall, J.E., Transformation of plasmid DNA into E. coli using the heat shock method, JoVE, 2007, vol. 6, p. e253. https://doi.org/10.3791/253

Giehl, M., Fabarius, A., Frank, O., Hochhaus, A., Hafner, M., Hehlmann, R., and Seifarth, W., Centrosome aberrations in chronic myeloid leukemia correlate with stage of disease and chromosomal instability, Leukemia, 2005, vol. 19, no. 7, pp. 1192–1197. https://doi.org/10.1038/sj.leu.2403779

Gregor, T., Bosakova, M.K., Nita, A., Abraham, S.P., Fafilek, B., Cernohorsky, N.H., Rynes, J., Foldynova-Trantirkova, S., Zackova, D., Mayer, J., Trantirek, L., and Krejci, P., Elucidation of protein interactions necessary for the maintenance of the BCR–ABL signaling complex, Cell Mol. Life Sci., 2019, vol. 77, no. 19, p. 3885. https://doi.org/10.1007/S00018-019-03397-7

Gu, C., Yaddanapudi, S., Weins, A., Osborn, T., Reiser, J., Pollak, M., Hartwig, J., and Sever, S., Direct dynamin-actin interactions regulate the actin cytoskeleton, EMBO J., 2010, vol. 29, no. 21, pp. 3593–3606. https://doi.org/10.1038/emboj.2010.249

Gurianov, D.S., Antonenko, S.V., and Telegeev, G.D., Colocalization of cortactin and PH domain of BCR in HEK293T cells and its potential role in cell signaling, Biopolym. Cell, 2016, vol. 32, no. 1, pp. 26–33. https://doi.org/10.7124/bc.000909

Gurianov, D.S., Antonenko, S.V., and Telegeev, G.D., Colocalization of BCR protein with clathrin, actin, and cortactin suggests its possible role in the regulation of actin branching and clathrin-mediated endocytosis, Cytol. Genet., 2021a, vol. 55, no. 2, pp. 152–161. https://doi.org/10.3103/S0095452721020055

Gurianov, D.S., Antonenko, S.V., and Telegeev, G.D., PH domain of BCR provides colocalization of full-length BCR with centrosome together with cortactin to facilitate actin-organizing function, Biopolym. Cell, 2021b, vol. 37, no. 1, pp. 3–13. https://doi.org/10.7124/BC.000A47

Hecht, F., Morgan, R., Schrier, S.L., Adams, J., and Sandberg, A.A., The Philadelphia (Ph) chromosome in leukemia. I. A new mechanism due to interstitial deletion and insertion in chronic myelocytic leukemia, Cancer Genet. Cytogenet., 1985, vol. 14, nos. 1–2, pp. 3–10. https://doi.org/10.1016/0165-4608(85)90209-2

Hirata, M., Kanematsu, T., Takeuchi, H., and Yagisawa, H., Pleckstrin homology domain as an inositol compound binding module, Jpn. J. Pharmacol., 1998, vol. 76, no. 3, pp. 255–263. https://doi.org/10.1254/jjp.76.255

Itoh, T., Erdmann, K.S., Roux, A., Habermann, B., Werner, H., and De Camilli, P., Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by BAR and F-BAR proteins, Dev. Cell, 2005, vol. 9, no. 6, pp. 791–804. https://doi.org/10.1016/j.devcel.2005.11.005

Jeannot, P. and Besson, A., Cortactin function in invadopodia, Small GTPases, 2020, vol. 11, no. 4, pp. 256–270. https://doi.org/10.1080/21541248.2017.1405773

Krueger, E.W., Orth, J.D., Cao, H., and McNiven, M.A., A dynamin-cortactin-Arp2/3 complex mediates actin reorganization in growth factor-stimulated cells, Mol. Biol. Cell, 2003, vol. 14, no. 3, pp. 1085–1096. https://doi.org/10.1091/mbc.e02-08-0466

Lee, J.Y., Hong, W.-J., Majeti, R., and Stearns, T., Centrosome-kinase fusions promote oncogenic signaling and disrupt centrosome function in myeloproliferative neoplasms, PloS One, 2014, vol. 9, no. 3, p. e92641. https://doi.org/10.1371/journal.pone.0092641

Lemmon, M.A., Pleckstrin homology (PH) domains, in Handbook of Cell Signaling, 2/e, 2010, vol. 2, pp. 1093–1101. https://doi.org/10.1016/B978-0-12-374145-5.00136-4

Lemmon, M.A. and Ferguson, K.M., Molecular determinants in pleckstrin homology domains that allow specific recognition of phosphoinositides, Biochem. Soc. Transact., 2001, vol. 29, no. 4, pp. 377–384. https://doi.org/10.1042/bst0290377

Lenoir, M., Kufareva, I., Abagyan, R., and Overduin, M., Membrane and protein interactions of the pleckstrin homology domain superfamily, Membranes, 2015, vol. 5, no. 4, pp. 646–663. https://doi.org/10.3390/membranes5040646

Lezin, G., Kosaka, Y., Yost, H.J., Kuehn, M.R., and Brunelli, L., A one-step miniprep for the isolation of plasmid DNA and lambda phage particles, PloS One, 2011, vol. 6, p. e23457. https://doi.org/10.1371/journal.pone.0023457

Li, D., Yang, Y., Lv, C., Wang, Y., Chao, X., Huang, J., Singh, S.P., Yuan, Y., Zhang, C., Lou, J., Gao, P., Huang, S., Li, B., and Cai, H., GxcM-Fbp17/RacC-WASP signaling regulates polarized cortex assembly in migrating cells via Arp2/3, J. Cell Biol., 2023, vol. 222, no. 6, p. e202208151. https://doi.org/10.1083/JCB.202208151

Litovchick, L., Resolving Proteins for Immunoblotting by Gel Electrophoresis, Cold Spring Harbor Protoc., 2018, vol. 2018, no. 10, p. pdb.prot098434. https://doi.org/10.1101/PDB.PROT098434

Maroun, C.R., Holgado-Madruga, M., Royal, I., Naujokas, M.A., Fournier, T.M., Wong, A.J., and Park, M., The Gab1 PH domain is required for localization of Gab1 at sites of cell-cell contact and epithelial morphogenesis downstream from the Met receptor tyrosine kinase, Mol. Cell Biol., 1999, vol. 19, no. 3, p. 1784. https://doi.org/10.1128/MCB.19.3.1784

Maroun, C.R., Naujokas, M.A., and Park, M., Membrane targeting of Grb2-associated Binder-1 (Gab1) scaffolding protein through Src Myristoylation sequence substitutes for Gab1 pleckstrin homology domain and switches an epidermal growth factor response to an invasive morphogenic program, Mol. Cell Biol., 2003, vol. 14, no. 4, p. 1691. https://doi.org/10.1091/MBC.E02-06-0352

Miroshnychenko, D., Dubrovska, A., Maliuta, S., Telegeev, G., and Aspenström, P., Novel role of pleckstrin homology domain of the Bcr-Abl protein: Analysis of protein-protein and protein-lipid interactions, Exp. Cell Res., 2010, vol. 316, no. 4, pp. 530–542. https://doi.org/10.1016/j.yexcr.2009.11.014

Nigg, E.A., Origins and consequences of centrosome aberrations in human cancers, Int. J. Cancer, 2006, vol. 119, no. 12, pp. 2717–2723. https://doi.org/10.1002/ijc.22245

Pancione, M., Cerulo, L., Remo, A., Giordano, G., Gutierrez-Uzquiza, Á., Bragado, P., and Porras, A., Centrosome dynamics and its role in inflammatory response and metastatic process, Biomolecules, 2021, vol. 11, no. 5, p. 629. https://doi.org/10.3390/BIOM11050629

Patel, H. and Gordon, M.Y., Abnormal centrosome-centriole cycle in chronic myeloid leukaemia?, Br. J. Haematol., 2009, vol. 146, no. 4, pp. 408–417. https://doi.org/10.1111/j.1365-2141.2009.07772.x

Quintás-Cardama, A. and Cortes, J., Molecular biology of bcr-abl1–positive chronic myeloid leukemia, Blood, 2009, vol. 113, no. 8, pp. 1619–1630. https://doi.org/10.1182/blood-2008-03-144790

Reckel, S., Gehin, C., Tardivon, D., Georgeon, S., Kükenshöner, T., Löhr, F., Koide, A., Buchner, L., Panjkovich, A., Reynaud, A., Pinho, S., Gerig, B., Svergun, D., Pojer, F., Güntert, P., Dötsch, V., Koide, S., Gavin, A.C., and Hantschel, O., Structural and functional dissection of the DH and PH domains of oncogenic Bcr-Abl tyrosine kinase, Nat. Commun., 2017, vol. 8, no. 1, p. 2101. https://doi.org/10.1038/S41467-017-02313-6

Schnoor, M., Stradal, T.E., and Rottner, K., Cortactin: Cell functions of a multifaceted actin-binding protein, Trends Cell Biol., 2018, vol. 28, no. 2, pp. 79–98. https://doi.org/10.1016/j.tcb.2017.10.009

Snider, C.E., Wan Mohamad Noor, W.N.I., Nguyen, N.T.H., Gould, K.L., and Suetsugu, S., The state of F-BAR domains as membrane-bound oligomeric platforms, Trends Cell Biol., 2021, vol. 31, no. 8, p. 644. https://doi.org/10.1016/J.TCB.2021.03.013

Studier, F.W., Protein production by auto-induction in high-density shaking cultures, Protein Expression Purif., 2005, vol. 41, pp. 207–234. https://doi.org/10.1016/j.pep.2005.01.016

Taylor, K.L., Taylor, R.J., Richters, K.E., Huynh, B., Carrington, J., McDermott, M.E., Wilson, R.L., and Dent, E.W., Opposing functions of F-BAR proteins in neuronal membrane protrusion, tubule formation, and neurite outgrowth, Life Sci. Alliance, 2019, vol. 2, no. 3, p. e201800288. https://doi.org/10.26508/LSA.201800288

Taylor, M.J., Perrais, D., and Merrifield, C.J., A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis, PLoS Biol., 2011, vol. 9, no. 3. https://doi.org/10.1371/JOURNAL.PBIO.1000604

Telegeev, G.D., Dubrovska, A.N., Dybkov, M.V., and Maliuta, S.S., Influence of BCR/ABL fusion proteins on the course of Ph leukemias, Acta Biochim. Pol., 2004, vol. 51, no. 3, pp. 845–849. https://doi.org/045103845

Thomas, C.C., Deak, M., Alessi, D.R., and van Aalten, D.M.F., High-resolution structure of the pleckstrin homology domain of protein kinase B/Akt bound to phosphatidylinositol (3,4,5)-trisphosphate, Curr. Biol., 2002, vol. 12, no. 14, pp. 1256–1262. https://doi.org/10.1016/S0960-9822(02)00972-7

Tsujita, K., Suetsugu, S., Sasaki, N., Furutani, M., Oikawa, T., and Takenawa, T., Coordination between the actin cytoskeleton and membrane deformation by a novel membrane tubulation domain of PCH proteins is involved in endocytosis, J. Cell Biol., 2006, vol. 172, no. 2, p. 269. https://doi.org/10.1083/JCB.200508091

Wang, W., Chen, L., Ding, Y., Jin, J., and Liao, K., Centrosome separation driven by actin-microfilaments during mitosis is mediated by centrosome-associated tyrosine-phosphorylated cortactin, J. Cell Sci., 2008, vol. 121, no. 8, pp. 1334–1343. https://doi.org/10.1242/jcs.018176

Weaver, A.M., Cortactin in tumor invasiveness, Cancer Lett., 2008, vol. 265, no. 2, pp. 157–166. https://doi.org/10.1016/j.canlet.2008.02.066

Weed, S.A. and Parsons, J.T., Cortactin: coupling membrane dynamics to cortical actin assembly, Oncogene, 2001, vol. 20, no. 44, pp. 6418–6434. https://doi.org/10.1038/sj.onc.1204783

Wetzler, M., Talpaz, M., Van Etten, R.A., Hirsh-Ginsberg, C., Beran, M., and Kurzrock, R., Subcellular localization of Bcr, Abl, and Bcr-Abl proteins in normal and leukemic cells and correlation of expression with myeloid differentiation, J. Clin. Invest., 1993, vol. 92, no. 4, pp. 1925–1939. https://doi.org/10.1172/JCI116786

Wu, H. and Parsons, J.T., Cortactin, an 80/85-kilodalton pp60src substrate, is a filamentous actin-binding protein enriched in the cell cortex, J. Cell Biol., 1993, vol. 120, no. 6, pp. 1417–1426. https://doi.org/10.1083/jcb.120.6.1417

Yugandhar, K., Gupta, S., and Yu, H., Inferring protein-protein interaction networks from mass spectrometry-based proteomic approaches: A mini-review, Comput. Struct. Biotechnol. J., 2019, vol. 17, pp. 805–811. https://doi.org/10.1016/J.CSBJ.2019.05.007/ASSET/8DF32536-B356-453D-8D1C-B04C45674C70/MAIN.ASSETS/GR1.JPG

Zhao, J., Zou, Y., Liu, H., Wang, H., Zhang, H., Hou, W., Li, X., Jia, X., Zhang, J., Hou, L., and Zhang, B., TEIF associated centrosome activity is regulated by EGF/PI3K/Akt signaling, Biochim. Biophys. Acta, Mol. Cell Res., 2014, vol. 1843, no. 9, pp. 1851–1864. https://doi.org/10.1016/J.BBAMCR.2014.04.021

Zhu, J., Zhou, K., Hao, J.-J., Liu, J., Smith, N., and Zhan, X., Regulation of cortactin/dynamin interaction by actin polymerization during the fission of clathrin-coated pits, J. Cell Sci., 2005, vol. 118, no. pt. 4, pp. 807–817. https://doi.org/10.1242/jcs.01668