TSitologiya i Genetika 2025, vol. 59, no. 5, 28-40
Cytology and Genetics 2025, vol. 59, no. 5, 465–475, doi: https://www.doi.org/10.3103/S009545272505010X

Distribution of two chloroplast haplotypes of the invasive weed himalayan balsam (Impatiens glandulifera) in Ukraine and other European countries

Tynkevich Y.O., Roshka N.M., Panchuk I.I., Volkov R.A.

  • Yuriy Fedkovych Chernivtsi National University, 2 Kotsiubynsky str., 58002 Chernivtsi, Ukraine

SUMMARY. One of the most well-known examples of successful plant invasion on the European continent is the rapid spread of Himalayan balsam (Impatiens glandulifera Royle). Introduced to Europe from the Himalayas in the first half of the 19th century as an ornamental and melliferous species, it first naturalized in Great Britain, from where it dispersed throughout Europe. Despite the active invasion of I. glandulifera in Eastern Europe, the genetic diversity of Himalayan balsam populations in this region has not yet been studied. In the present work, we identified variants of two chloroplast DNA (cpDNA) regions, trnS-G and rpl32-trnL (UAG), in Ukrainian I. glandulifera accessions and compared them with variants from continental Europe and Great Britain, as well as with those from India and Pakistan. It was shown that two haplotypes, T1-R1 and T2-R2, which differ in the two regions of cpDNA analyzed, are widespread in continental Europe. The divergence of the two haplotypes occurred within the native range. The diversity of I. glandulifera cpDNA variants appeared to be significantly higher in the native than in the invasive range. The widespread occurrence of two chloroplast haplotypes in Europe supports the hypothesis of multiple introductions of I. glandulifera. The uneven distribution of haplotypes T1-R1 and T2-R2 within Ukraine may be a consequence of the founder effect.

Keywords:

TSitologiya i Genetika
2025, vol. 59, no. 5, 28-40

Current Issue
Cytology and Genetics
2025, vol. 59, no. 5, 465–475,
doi: 10.3103/S009545272505010X

Full text and supplemented materials

Free full text: PDF  

References

Beerling, D.J., and Perrins, J.M., Impatiens glandulifera Royle (Impatiens roylei Walp.), J. Ecol., 1993, vol. 81, no. 2, pp. 367–382. https://doi.org/10.2307/2261507

Bock, D.G., Caseys, C., Cousens, R.D., Hahn, M.A., Heredia, S.M., Hübner, S., Turner, K.G., Whitney, K.D., and Rieseberg, L.H., What we still don’t know about invasion genetics, Mol. Ecol., 2015, vol. 24, no. 9, pp. 2277–2297. https://doi.org/10.1111/mec.13032

Chen, G., Stepanenko, A., and Borisjuk, N., Contrasting patterns of 5S rDNA repeats in European and Asian ecotypes of greater duckweed, Spirodela polyrhiza (Lemnaceae), Front. Plant Sci., 2024, vol. 15, p. 1378683. https://doi.org/10.3389/fpls.2024.1378683

Cockel, C.P., and Tanner, R.A., Impatiens glandulifera Royle (Himalayan balsam), in A Handbook of Global Freshwater Invasive Species, Routledge, 2012, pp. 83–93.

Čuda, J., Skálová, H., and Pyšek, P., Spread of Impatiens glandulifera from riparian habitats to forests and its associated impacts: Insights from a new invasion, Weed Res., 2020, vol. 60, no. 1, pp. 8–15. https://doi.org/10.1111/wre.12400

Dlugosch, K.M., Anderson, S.R., Braasch, J., Cang, F.A., and Gillette, H.D., The devil is in the details: Genetic variation in introduced populations and its contributions to invasion, Mol. Ecol., 2015, vol. 24, no. 9, pp. 2095–2111. https://doi.org/10.1111/mec.13183

Dubyna, D.V., Iemelianova, S.M., Dvoretzkiy, T.V., Dziuba, T.P., and Tymoshenko, P.A., Adventization of coenofloras of the classes of pioneer vegetation in Ukraine, Ukr. Bot. J., 2019, vol. 76, no. 6, pp. 499–510. https://doi.org/10.15407/ukrbotj76.06.499

Estoup, A., Ravigné, V., Hufbauer, R., Vitalis, R., Gautier, M., and Facon, B., Is there a genetic paradox of biological invasion? Annu. Rev. Ecol. Evol. Syst., 2016, vol. 47, no. 1, pp. 51–72. https://doi.org/10.1146/annurev-ecolsys-121415-032116

Exposito-Alonso, M., Becker, C., Schuenemann, V.J., Reiter, E., Setzer, C., Slovak, R., Brachi, B., Hagmann, J., Grimm, D.G., Chen, J., Busch, W., Bergelson, J., Ness, R.W., and Weigel, D., The rate and potential relevance of new mutations in a colonizing plant lineage, PLoS Genet., 2018, vol. 14, no. 2, p. e1007155. https://doi.org/10.1371/journal.pgen.1007155

Gaskin, J.F., Schwarzländer, M., Hinz, H.L., Williams III, L., Gerber, E., Rector, B.G., and Zhang, D., Genetic identity and diversity of perennial pepperweed (Lepidium latifolium) in its native and invaded ranges, Invasive Plant Sci. Manage., 2013, vol. 6, no. 2, pp. 268–280. https://doi.org/10.1614/IPSM-D-12-00075.1

Hagenblad, J., Hülskötter, J., Acharya, K.P., Brunet, J., Chabrerie, O., Cousins, S.A.O., Dar, P.A., Diekmann, M., De Frenne, P., Hermy, M., Jamoneau, A., Kolb, A., Lemke, I., Plue, J., Van Acker, J., and Verheyen, K., Low genetic diversity despite multiple introductions of the invasive plant species Impatiens glandulifera in Europe, BMC Genet., 2015, vol. 16, p. 103. https://doi.org/10.1186/s12863-015-0242-8

Hamilton, M.B., Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation, Mol. Ecol., 1999, vol. 8, no. 3, pp. 521–523. https://doi.org/10.1046/j.1365-294X.1999.00510.x

Helsen, K., Hagenblad, J., Acharya, K.P., Brunet, J., Cousins, S.A.O., Decocq, G., De Frenne, P., Kimberley, A., Kolb, A., Michaelsen, C., Plue, J., Verheyen, K., and Graae, B.J., No genetic erosion after five generations for Impatiens glandulifera populations across the invaded range in Europe, BMC Genet., 2019, vol. 20, p. 20. https://doi.org/10.1186/s12863-019-0721-4

Huotari, T., and Korpelainen, H., Comparative analyses of plastid sequences between native and introduced populations of aquatic weeds Elodea canadensis and E. nuttallii, PLoS One, 2013, vol. 8, no. 4, e58073. https://doi.org/10.1371/journal.pone.0058073

Irimia, R.E., Hierro, J.L., Branco, S., Sotes, G., Cavieres, L.A., Eren, Ö., Lortie, C.J., French, K., Callaway, R.M., Montesinos, D., Experimental admixture among geographically disjunct populations of an invasive plant yields a global mosaic of reproductive incompatibility and heterosis, J. Ecol., 2021, vol. 109, no. 5, pp. 2152–2162. https://doi.org/10.1111/1365-2745.13628

Ishchenko, O.O., Panchuk, I.I., Andreev, I.O., Kunakh, V.A., and Volkov, R.A., Molecular organization of 5S ribosomal DNA of Deschampsia antarctica, Cytol. Genet., 2018, vol. 52, no. 6, pp. 416–421. https://doi.org/10.3103/S0095452718060105

Ishchenko, O.O., Mel’nyk, V.M., Parnikoza, I.Y., Budzhak, V.V., Panchuk, I.I., Kunakh, V.A., and Volkov, R.A., Molecular organization of 5S ribosomal DNA and taxonomic status of Avenella flexuosa (L.) Drejer (Poaceae), Cytol. Genet., 2020, vol. 54, pp. 505–513. https://doi.org/10.3103/S0095452720060055

Ivanovych, Y., and Volkov, R., Genetic relatedness of sweet cherry (Prunus avium L.) cultivars from Ukraine determined by microsatellite markers, J. Hortic. Sci. Biotechnol., 2018, vol. 93, no. 1, pp. 64–72. https://doi.org/10.1080/14620316.2017.1342568

Ivanovych, Y.I., Udovychenko, K.M., Bublyk, M.O., and Volkov, R.A., ISSR-PCR fingerprinting of Ukrainian sweet cherry (Prunus avium L.) cultivars, Cytol. Genet., 2017, vol. 51, pp. 40–47. https://doi.org/10.3103/S0095452717010066

Jocienė, L., Krokaitė, E., Rekašius, T., Paulauskas, A., and Kupčinskienė, E., Evaluation of genetic diversity of Himalayan balsam (Impatiens glandulifera Royle) populations using microsatellites, Zemdirbyste-Agric., 2022, vol. 109, no. 3, pp. 199–206. https://doi.org/10.13080/z-a.2022.109.033

Katoh, K. and Standley, D.M., MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol. Biol. Evol., 2013, vol. 30, no. 4, pp. 772–780. https://doi.org/10.1093/molbev/mst010

Kelager, A., Pedersen, J.S., and Bruun, H.H., Multiple introductions and no loss of genetic diversity: invasion history of Japanese Rose, Rosa rugosa, in Europe, Biol. Invasions, 2013, vol. 15, pp. 1125–1141. https://doi.org/10.1007/s10530-012-0354-3

Korpelainen, H. and Elshibli, S., Assessment of genetic relationships among native and introduced Himalayan balsam (Impatiens glandulifera) plants based on genome profiling, Ecol. Evol., 2021, vol. 11, no. 19, pp. 13295–13304. https://doi.org/10.1002/ece3.8051

Kupcinskiene, E., Zybartaite, L., and Paulauskas, A., Comparison of genetic diversity of three Impatiens species from Central Europe and Baltic region, Zemdirbyste-Agric., 2015, vol. 102, no. 1, pp. 73–80. https://doi.org/10.13080/z-a.2015.102.011

Kurose, D., Pollard, K.M., and Ellison, C.A., Chloroplast DNA analysis of the invasive weed, Himalayan balsam (Impatiens glandulifera), in the British Isles, Sci. Rep., 2020, vol. 10, p. 10966. https://doi.org/10.1038/s41598-020-67871-0

Leigh, J.W., Bryant, D., and Nakagawa, S., POPART: full-feature software for haplotype network construction, Methods Ecol. Evol., 2015, vol. 6, no. 9, pp. 1110–1116. https://doi.org/10.1111/2041-210X.12410

Li, X., Yang, Y., Henry, R.J., Rossetto, M., Wang, Y., and Chen, S., Plant DNA barcoding: From gene to genome, Biol. Rev., 2015, vol. 90, no. 1, pp. 157–166. https://doi.org/10.1111/brv.12104

Love, H.M., Maggs, C.A., Murray, T.E., and Provan, J., Genetic evidence for predominantly hydrochoric gene flow in the invasive riparian plant Impatiens glandulifera (Himalayan balsam), Ann. Bot., 2013, vol. 112, no. 9, pp. 1743–1750. https://doi.org/10.1093/aob/mct227

Mukherjee, A., Williams, D.A., Gitzendanner, M.A., Overholt, W.A., and Cuda, J.P., Microsatellite and chloroplast DNA diversity of the invasive aquatic weed Hygrophila polysperma in native and invasive ranges, Aquat. Bot., 2016, vol. 129, pp. 55–61. https://doi.org/10.1016/j.aquabot.2015.12.004

Nagy, A.M., and Korpelainen, H., Population genetics of Himalayan balsam (Impatiens glandulifera): Comparison of native and introduced populations, Plant Ecol. Diversity, 2015, vol. 8, no. 3, pp. 317–321. https://doi.org/10.1080/17550874.2013.863407

Parepa, M., Fischer, M., Krebs, C., and Bossdorf, O., Hybridization increases invasive knotweed success, Evol. Appl., 2014, vol. 7, no. 3, pp. 413–420. https://doi.org/10.1111/eva.12139

Poczai, P., Hyvönen, J., Taller, J., Jahnke, G., and Kocsis, L., Phylogenetic analyses of Teleki grapevine rootstocks using three chloroplast DNA markers, Plant Mol. Biol. Rep., 2013, vol. 31, pp. 371–386. https://doi.org/10.1007/s11105-012-0512-9

Porebski, S., Bailey, L.G., and Baum, B.R., Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components, Plant. Mol. Biol. Rep. 1997, vol. 15, no. 1, pp. 8–15. https://doi.org/10.1007/BF02772108

POWO, Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew, 2025. http://www.plantsoftheworldonline.org/.

Provan, J., Love, H.M., and Maggs, C.A., Development of microsatellites for the invasive riparian plant Impatiens glandulifera (Himalayan balsam) using intersimple sequence repeat cloning, Mol. Ecol. Notes, 2007, vol. 7, no. 3, pp. 451–453. https://doi.org/10.1111/j.1471-8286.2006.01614.x

Pyšek, P., and Prach, K., Invasion dynamics of Impatiens glandulifera—a century of spreading reconstructed, Biol. Conserv., 1995, vol. 74, no. 1, pp. 41–48. https://doi.org/10.1016/0006-3207(95)00013-T

Shaw, J., Lickey, E.B., Schilling, E.E., and Small, R. L., Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III, Am. J. Bot., 2007, vol. 94 no. 3, pp. 275–288. https://doi.org/10.3732/ajb.94.3.275

Smith, A.L., Hodkinson, T.R., Villellas, J., Catford, J.A., Csergő, A.M., Blomberg, S.P., et al., Global gene flow releases invasive plants from environmental constraints on genetic diversity, PNAS, 2020, vol. 117, no. 8, pp. 4218–4227. https://doi.org/10.1073/pnas.1915848117

Stafiniak, M., Bielecka, M., Kujawa, K., Jezierska-Domaradzaka, A., Pencakowski, B., Basiak, A., et al., Integrative morphological, phytochemical, and molecular identification of three invasive and medicinal Reynoutria species, Sci. Rep., 2025. vol. 15, no. 1, p. 6001, https://doi.org/10.1038/s41598-025-90494-2

Tamura, K., Stecher, G., and Kumar, S., MEGA11: molecular evolutionary genetics analysis version 11, Mol. Biol. Evol., 2021, vol. 38, no. 7, pp. 3022–3027. https://doi.org/10.1093/molbev/msab120

Tanner, R.A., and Gange, A.C., Himalayan balsam, Impatiens glandulifera: Its ecology, invasion and management, Weed Res., 2020, vol. 60, no. 1, pp. 4–7. https://doi.org/10.1111/wre.12401

Tynkevich, Y.O., Novikov, A.V., Chorney, I.I., and Volkov, R.A., Organization of the 5S rDNA intergenic spacer and its use in the molecular taxonomy of the genus Aconitum L., Cytol. Genet., 2022, vol. 56, no. 6, pp. 494–503. https://doi.org/10.3103/S0095452722060111

Tynkevich, Y.O., Shelyfist, A.Y., Kozub, L.V., Hemleben, V., Panchuk, I.I., and Volkov, R.A., 5S ribosomal DNA of genus Solanum: molecular organization, evolution, and taxonomy, Front. Plant Sci., 2022, vol. 13, p. 852406. https://doi.org/10.3389/fpls.2022.852406

Tynkevich, Y.O., Boychuk, S.V., Shelyfist, A.Y., Chorney, I.I., and Volkov, R.A., Molecular phylogeny and genetic diversity of Carpathian members of the genus Muscari inferred from plastid DNA sequences, Cytol. Genet., 2023, vol. 57, no. 5, pp. 387–398. https://doi.org/10.3103/S0095452723050079

Tynkevich, Y.O., Yakobyshen, D.V., Cherkazianova, A.S., Shelyfist, A.Y., and Volkov, R.A., Intragenomic polymorphism of the ITS1-5.8S-ITS2 region in invasive species of the genus Reynoutria, Cytol. Genet., 2024, vol. 58, pp. 536–546. https://doi.org/10.3103/S0095452724060112

Tynkevich, Y.O., Blyzniuk, K.H., Ivanovych, Y.I., Roshka, N.M., Tokaryuk, A.I., Shelyfist, A.Y., and Volkov, R.A., Genetic diversity of Ukrainian populations of invasive species of the genus Galinsoga assessed by ISSR-markers, Cytol. Genet., 2025a, vol. 59, no. 1, pp. 11–23. https://doi.org/10.3103/S0095452725010141

Tynkevich, Y.O., Cherkazianova, A.S., Chorney, I.I., Panchuk, I.I., and Volkov, R.A., Genetic polymorphism of invasive species of knotweed (Reynoutria) assessed by the matK and rpl32-trnL (UAG) regions of chloroplast DNA, Cytol. Genet., 2025b, vol. 59, no. 3, pp. 259–269. https://doi.org/10.3103/S0095452725030089

Uemura, R., Asakawa, A., Fujii, S., Matsuo, A., Suyama, Y., Maki M. Can Rumex madaio (Polygonaceae) be threatened by natural hybridization with an invasive species in Japan, Nord. J. Bot., 2022, vol. 2022, no. 5, pp. e03543. https://doi.org/10.1111/njb.03543

Walker, N.F., Hulme, P.E., and Hoelzel, A.R., Population genetics of an invasive riparian species, Impatiens glandulifera, Plant Ecol., 2009, vol. 203, pp. 243–252. https://doi.org/10.1007/s11258-008-9540-9

Weiss, V., Impatiens glandulifera in Central Europe: History of its dissemination and appreciation. Volkmar Weiss, 2021.

Williams, D.A., Harms, N.E., Knight, I.A., Grewell, B.J., Futrell, C.J., and Pratt, P.D., High genetic diversity in the clonal aquatic weed Alternanthera philoxeroides in the United States, Invasive Plant Sci. Manage., 2020, vol. 13, no. 4, pp. 217–225. https://doi.org/10.1017/inp.2020.32

Xie, P., Guo, Y., Teng, Y., Zhou, W., and Yu, Y., GeneMiner: A tool for extracting phylogenetic markers from next-generation sequencing data, Mol. Ecol. Res., 2024, vol. 24, no. 3, pp. e13924. https://doi.org/10.1111/1755-0998.13924