TSitologiya i Genetika 2025, vol. 59, no. 1, 28-40
Cytology and Genetics 2025, vol. 59, no. 1, 24–35, doi: https://www.doi.org/10.3103/S0095452725010086

Chitosan-based hydrogels supplemented with N-stearoylethanolamine for acceleration of healing of acute cutaneous wounds: cytological and histological evaluating

Manko N., Ivasechko I., Antonyuk R., Lutsyk M., Kosiakova G., Gula N., Korniy S., Klyuchivska O., Kozak J., Dumich T., Stoyka R.

  1. Institute of Cell Biology the National Academy of Sciences of Ukraine, Lviv, Ukraine
  2. Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
  3. O.V. Palladin Institute of Biochemastry the National Academy of Sciences of Ukraine, Kyiv, Ukraine
  4. Karpenko Phisico-Mechanical Institute of the NAS of Ukraine, Lviv, Ukraine

SUMMARY. Wound management remains a significant clinical challenge, necessitating the development of advanced biomaterial solutions. This study aimed to evaluate the wound healing potential of novel chitosan-hya-luronic acid-based hydrogel supplemented with N-stea-roylethanolamine (NSE). Two hydrogel systems were developed: one with and one without the anti-inflam-matory cannabimimetic NSE. Morphology was studied using scanning electron microscopy, biocompatibility and biodegradability were tested using murine fibro-blasts by MTT assay and neutral red staining. Wound healing was evaluated in C57 black laboratory mice using histological analysis with hematoxylin staining. The hydrogels demonstrated high biocompatibility, enhanced fibroblast migration, and induced lysosomal activity, indicating biodegradability. Both hydrogel sys-tems accelerated wound healing in mice, with faster epithelialization and remodeling of wound tissues ob-served in histological sections. Acceleration of wound healing was found at the use of both types of the created gel films – with and without the NSE, that was confirmed by faster epithelialization and remodeling of wound tissues observed in the histological sections.

Keywords: Chitosan, hydrogels, N-stearoyl ethanolamine, wound dressing, wound healing

TSitologiya i Genetika
2025, vol. 59, no. 1, 28-40

Current Issue
Cytology and Genetics
2025, vol. 59, no. 1, 24–35,
doi: 10.3103/S0095452725010086

Full text and supplemented materials

Free full text: PDF  

References

Abou El-Ezz, D., Abdel-Rahman, L., Al-Farhan, B., Mostafa, D., Ayad, E., and Basha, M., Enhanced in vivo wound healing efficacy of a novel hydrogel loaded with copper (ii) schiff base quinoline complex (CuSQ) solid lipid nanoparticles, Pharmaceuticals, 2022, vol. 15, no. 8, p. 978. https://doi.org/10.3390/ph15080978

Alavarse, A., de Oliveira Silva, F., Colque, J., da Silva, V., Prieto, T., Venancio, E., and Bonvent, J., Biopolymeric electrospun nanofibers for wound dressings in diabetic patients, Mater. Sci. Eng., 2017, vol. 77, pp. 271–281. https://doi.org/10.3390/pharmaceutics12100983

Ardean, C., Davidescu, C., Nemeş, N., Negrea, A., Ciopec, M., Duteanu, N., Negrea, P., Duda-Seiman, D., and Musta, V., factors influencing the antibacterial activity of chitosan and chitosan modified by functionalization, Int. J. Mol. Sci., 2021, vol. 22, no. 14, p. 7449. https://doi.org/10.3390/ijms22147449

Barral, D., Staiano, L., Guimas Almeida, C., Cutler, D., Eden, E., Futter, C., Galione, C., Marques, A., Medina, A., Napolitano, D., Settembre, G., Vieira, C., Aerts, O., Atakpa-Adaji, J., Bruno, P., Capuozzo, G., De Leonibus, A., Di Malta, E., Escrevente, C., Esposito, C., and Seabra, A., Current methods to analyze lysosome morphology, positioning, motility and function, Traffic, 2022, vol. 23, no. 5, pp. 238–269. https://doi.org/10.1111/tra.12839

Berdyshev, A., Kosiakova, H., Onopchenko, O., Panchuk, R., Stoika, S., and Hula, N., N-stearoylethanolamine suppresses the pro-inflammatory cytokines production by inhibition of NF-κB translocation, Prostaglandins Other Lipid Mediators, 2015, vol. 121, pp. 91–96. https://doi.org/10.1016/j.prostaglandins.2015.05.001

Biological evaluation of medical devices - Part 5: Tests for in vitro cytotoxicity, https://nhiso.com/wp content/uploads/2018/05/ISO-10993-5-2009.pdf.

Costa, M., Durço, A., Rabelo, T., and Barreto, R. de S.S., Effects of Carvacrol, Thymol and essential oils containing such monoterpenes on wound healing: a systematic review, A Guimarães, J. Pharmacy Pharmacol., 2018, vol. 71, no. 2, pp. 141–155. https://doi.org/10.1111/jphp.13054

Dai, M., Zheng, X., Xu, X., Kong, X., Li, X., and Guo, G., Chitosan-Alginate Sponge: Preparation and Application in Curcumin Delivery for Dermal Wound Healing in Rat, J. Biomed. Biotechnol., 2009, pp. 1–8. https://doi.org/10.1155/2009/595126

Du, X., Liu, Y., Yan, H., Rafique, M., Li, S., Shan, X., Wu, L., Qiao, M., Kong, D., and Wang, L., Anti-infective and pro-coagulant chitosan-based hydrogel tissue adhesive for sutureless wound closure, Biomacromolecules, 2020, vol. 21, no. 3, pp. 1243–1253. https://doi.org/10.1021/acs.biomac.9b01707

El-Hack, M., El-Saadony, M., Shafi, M., Zabermawi, N., Arif, M., Batiha, G., Khafaga, A., Abd El-Hakim, Y., and Al-Sagheer, A., Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review, Int. J. Biol. Macromol., 2020, vol. 164, pp. 2726–2744. https://doi.org/10.1016/j.ijbiomac.2020.08.153

Fan, P., Zeng, Y., Dionisio Zaldivar, S., Agüero, L., and Wang, S., Chitosan-based hemostatic hydrogels: the concept, mechanism, application, and prospect. The concept, mechanism, application, and prospects, Molecules, 2023, vol. 28, no. 3, pp. 1473–1483. https://doi.org/10.3390/molecules28031473

Graça, M., Miguel, S., Cabral, C., and Correia, I., Hyaluronic acid—Based wound dressings: A review, Carbohydr. Polym., 2020, vol. 241, p. 116364. https://doi.org/10.1016/j.carbpol.2020.116364

Gula, N., Marhitych, V., Goridko, T., Artamonov, M., Zhukov, A., and Klimashevskyi, V., UA Patent No. 81861, 2008.

Hong, F., Qiu, P., Wang, Y., Ren, P., Liu, J., Zhao, J., and Gou, D., Chitosan-based hydrogels: From preparation to applications, a review, Food Chem.: X, 2024, vol. 21, p. 101095. https://doi.org/10.1016/j.fochx.2023.101095

Hudz, I., Chernyshenko, V., Kasatkina, L., Urvant, L., Klimashevskyi, V., Tkachenko, O., Kosiakova, H., Hula, N., and Platonova, T., N-stearoylethanolamine inhibits integrin-mediated activation, aggregation, and adhesion of human platelets, J. Pharmacol. Exp. Ther., 2022, vol. 383, no. 1, pp. 2–10. https://doi.org/10.1124/jpet.122.001084

Kirwale, S., Sharma, S., and Roy, A., Chitosan, chondroitin sulfate, and hyaluronic acid based in-situ forming scaffold for efficient cell grafting, Int. J. Biol. Macromol., 2023, vol. 225, pp. 938–951. https://doi.org/10.1016/j.ijbiomac.2022.11.157

Kittilukkana, A., Sanit, J., and Pilapong, C., Reproposing neutral red as a colorimetric probe for quantitative assessment of lysosomal clearance in neuroblastoma cell line, ChemistrySelect, 2024, vol. 9, p. e202303856. https://doi.org/10.1002/slct.202303856

Kosiakova, H., Berdyshev, A., Dosenko, V., Drevytska, T., Herasymenko, O., and Hula, N., The involvement of peroxisome proliferator-activated receptor gamma (PPARγ) in anti-inflammatory activity of N-stearoylethanolamine, Heliyon, 2022, vol. 8, no. 11, pp. e11336–6. https://doi.org/10.1016/j.heliyon.2022.e11336

Kuznietsova, H., Byelinska, I., Dziubenko, N. et al. Suppression of systemic inflammation and signs of acute and chronic cholangitis by multi-kinase inhibitor 1-(4-Cl-benzyl)-3-chloro-4-(CF3-phenylamino)-1H-pyrrole-2,5-dione, Mol. Cell Biochem., 2021, vol. 476, pp. 3021–3035. https://doi.org/10.1007/s11010-021-04144-y

Kosiakova, H., Berdyshev, A., Horid’ko, T., Meged, O., Klimashevsky, V., Matsokha, R., Asmolkova, O., Kvitnitskaya-Ryzhova, V., Luhovskyi, T., Klymenko, S., and Hula, N., N-Stearoylethanolamine exerts cardioprotective effects in old rats, Curr. Aging Sci., 2024, vol. 17, no. 2, pp. 144–155. https://doi.org/10.2174/0118746098275323231226073348

Lootsik, M., Bilyy, R., Lutsyk, M., and Stoika, S., Preparation of chitosan with high blood clotting activity and its hemostatic potential assessment, Biotechnol. Acta, 2015, vol. 8, no. 6, pp. 32–40. https://doi.org/10.15407/biotech8.06.032

Lootsik, M., Bilyy, R., Lutsyk, M., and Stoika, R., Ukraine Patent No. 112716, 2016.

Lootsik, M., Manko, N., Gromyko, O., Tistechok, S., Lutsyk, M., and Stoika, R., Honeybee chitosan-melanin complex: isolation and investigation of antimicrobial activity, Ukr. Biochem. J., 2020, vol. 92, no. 6, pp. 143–153. https://doi.org/10.15407/ubj92.06.143

Lootsik, M., Manko, N., Bilyy, R., Lootsik, Jr. M., and Stoika, R., Multifunctional chitosan-based hydrogels: characterization and evaluation of biocompatibility and biodegradability in vitro, Ukr. Biochem. J., 2022, vol. 94, no. 2, pp. 76–84. https://doi.org/10.15407/ubj94.02.076

Maia, J., Fonseca, B., Teixeira, N., and Correia-da-Silva, G., Unveiling the angiogenic effects of cannabinoids: Enhancers or inhibitors?, Biochem. Pharmacol., 2023, vol. 215, p. 115686. https://doi.org/10.1016/j.bcp.2023.115686

Manko, N., Lootsik, M., Antonyuk, V., Ivasechko, I., Skorohyd, N., Kosiakova, H., Mehed, O., Horidko, I., Hula, N., Klyuchivska, O., Panchuk, R., Po-khodylo, N., Barabash, O., Dumych, T., and Stoika, R., Ukr. Biochem. J., 2024, vol. 96, no. 1, pp. 80–95. https://doi.org/10.15407/ubj96.01.080

Momin, M., Kurhade, S., Khanekar, P., and Mhatre, S., Novel biodegradable hydrogel sponge containing curcumin and honey for wound healing, J. Wound Care, 2016, vol. 25, no. 6, pp. 364–372. https://doi.org/10.12968/jowc.2016.25.6.364

Murakami, K., Ishihara, M., Aoki, H., Nakamura, S., Nakamura, S., Yanagibayashi, S., Takikawa, M., Kishimoto, S., Yokoe, H., Kiyosawa, T., and Sato, Y., Enhanced healing of mitomycin C-treated healing-impaired wounds in rats with hydrosheets composed of chitin/chitosan, fucoidan, and alginate as wound dressings, Wound Repair Regener., 2010, vol. 18, no. 5, pp. 478–485. https://doi.org/10.1111/j.1524-475X.2010.00606.x

Ningrum, D., Hanif, W., Mardhian, D., and Asri, A., In vitro biocompatibility of hydrogel polyvinyl alcohol/moringa oleifera leaf extract/graphene oxide for wound dressing, Polymers, 2023, vol. 15, no. 2, p. 468. https://doi.org/10.3390/polym15020468

Ou, Y. and Tian, M., Advances in multifunctional chitosan-based self-healing hydrogels for biomedical applications, J. Mater. Chem. B, 2021, vol. 9, no. 38. https://doi.org/10.1039/d1tb01363g

Pérez-Recalde, M., Ruiz Arias, I., and Hermida, E., Could essential oils enhance biopolymers performance for wound healing? A systematic review, Phytomedicine, 2018, vol. 38, pp. 57–65. https://doi.org/10.1016/j.phymed.2017.09.024

Prasathkumar, M. and Sadhasivam, S., Chitosan/Hyaluronic acid/Alginate and an assorted polymer loaded with honey, plant, and marine compounds for progressive wound healing—Know-how, Int. J. Biol. Macromol., 2021, vol. 186, pp. 656–685. https://doi.org/10.1016/j.ijbiomac.2021.07.067

Shivakumar, P., Gupta, M., Jayakumar, R., and Gowda, D., Prospection of chitosan and its derivatives in wound healing: Proof of patent analysis (2010–2020), Int. J. Biol. Macromol., 2021, vol. 184, pp. 701–712. https://doi.org/10.1016/j.ijbiomac.2021.06.086

Singh, N., Aery, S., Juneja, S., Kumari, L., Lone, M.S., Dar, A.A., Pawar, S.V., Mehta, S.K., and Dan, A., Chitosan hydrogels with embedded thermo-and pH-responsive microgels as a potential carrier for controlled release of drugs, ACS Appl. Biol. Mater., 2022, vol. 5, pp. 3487–3499. https://doi.org/10.1021/acsabm.2c00401

Šitum, K., Bokulić, A., Ivetić-Tkalčević, V., Parnham, M., Čužić, S., and Đurić, K., Comparison of systemic inflammatory and hematology parameters in normal C57Bl/6 and genetically diabetic db/db mice during local wound repair, Biochem. Med., 2007, vol. 17, pp. 85–93. https://doi.org/10.11613/BM.2007.009

Yuan, N., Shao, K., Huang, S., and Chen, C., Chitosan, alginate, hyaluronic acid and other novel multifunctional hydrogel dressings for wound healing: A review, Int. J. Biol. Macromol., 2023, vol. 240, p. 124321. https://doi.org/10.1016/j.ijbiomac.2023.124321