SUMMARY. Wound management remains a significant clinical challenge, necessitating the development of advanced biomaterial solutions. This study aimed to evaluate the wound healing potential of novel chitosan-hya-luronic acid-based hydrogel supplemented with N-stea-roylethanolamine (NSE). Two hydrogel systems were developed: one with and one without the anti-inflam-matory cannabimimetic NSE. Morphology was studied using scanning electron microscopy, biocompatibility and biodegradability were tested using murine fibro-blasts by MTT assay and neutral red staining. Wound healing was evaluated in C57 black laboratory mice using histological analysis with hematoxylin staining. The hydrogels demonstrated high biocompatibility, enhanced fibroblast migration, and induced lysosomal activity, indicating biodegradability. Both hydrogel sys-tems accelerated wound healing in mice, with faster epithelialization and remodeling of wound tissues ob-served in histological sections. Acceleration of wound healing was found at the use of both types of the created gel films – with and without the NSE, that was confirmed by faster epithelialization and remodeling of wound tissues observed in the histological sections.
Keywords: Chitosan, hydrogels, N-stearoyl ethanolamine, wound dressing, wound healing

Full text and supplemented materials
Free full text: PDFReferences
Abou El-Ezz, D., Abdel-Rahman, L., Al-Farhan, B., Mostafa, D., Ayad, E., and Basha, M., Enhanced in vivo wound healing efficacy of a novel hydrogel loaded with copper (ii) schiff base quinoline complex (CuSQ) solid lipid nanoparticles, Pharmaceuticals, 2022, vol. 15, no. 8, p. 978. https://doi.org/10.3390/ph15080978
Alavarse, A., de Oliveira Silva, F., Colque, J., da Silva, V., Prieto, T., Venancio, E., and Bonvent, J., Biopolymeric electrospun nanofibers for wound dressings in diabetic patients, Mater. Sci. Eng., 2017, vol. 77, pp. 271–281. https://doi.org/10.3390/pharmaceutics12100983
Ardean, C., Davidescu, C., Nemeş, N., Negrea, A., Ciopec, M., Duteanu, N., Negrea, P., Duda-Seiman, D., and Musta, V., factors influencing the antibacterial activity of chitosan and chitosan modified by functionalization, Int. J. Mol. Sci., 2021, vol. 22, no. 14, p. 7449. https://doi.org/10.3390/ijms22147449
Barral, D., Staiano, L., Guimas Almeida, C., Cutler, D., Eden, E., Futter, C., Galione, C., Marques, A., Medina, A., Napolitano, D., Settembre, G., Vieira, C., Aerts, O., Atakpa-Adaji, J., Bruno, P., Capuozzo, G., De Leonibus, A., Di Malta, E., Escrevente, C., Esposito, C., and Seabra, A., Current methods to analyze lysosome morphology, positioning, motility and function, Traffic, 2022, vol. 23, no. 5, pp. 238–269. https://doi.org/10.1111/tra.12839
Berdyshev, A., Kosiakova, H., Onopchenko, O., Panchuk, R., Stoika, S., and Hula, N., N-stearoylethanolamine suppresses the pro-inflammatory cytokines production by inhibition of NF-κB translocation, Prostaglandins Other Lipid Mediators, 2015, vol. 121, pp. 91–96. https://doi.org/10.1016/j.prostaglandins.2015.05.001
Biological evaluation of medical devices - Part 5: Tests for in vitro cytotoxicity, https://nhiso.com/wp content/uploads/2018/05/ISO-10993-5-2009.pdf.
Costa, M., Durço, A., Rabelo, T., and Barreto, R. de S.S., Effects of Carvacrol, Thymol and essential oils containing such monoterpenes on wound healing: a systematic review, A Guimarães, J. Pharmacy Pharmacol., 2018, vol. 71, no. 2, pp. 141–155. https://doi.org/10.1111/jphp.13054
Dai, M., Zheng, X., Xu, X., Kong, X., Li, X., and Guo, G., Chitosan-Alginate Sponge: Preparation and Application in Curcumin Delivery for Dermal Wound Healing in Rat, J. Biomed. Biotechnol., 2009, pp. 1–8. https://doi.org/10.1155/2009/595126
Du, X., Liu, Y., Yan, H., Rafique, M., Li, S., Shan, X., Wu, L., Qiao, M., Kong, D., and Wang, L., Anti-infective and pro-coagulant chitosan-based hydrogel tissue adhesive for sutureless wound closure, Biomacromolecules, 2020, vol. 21, no. 3, pp. 1243–1253. https://doi.org/10.1021/acs.biomac.9b01707
El-Hack, M., El-Saadony, M., Shafi, M., Zabermawi, N., Arif, M., Batiha, G., Khafaga, A., Abd El-Hakim, Y., and Al-Sagheer, A., Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review, Int. J. Biol. Macromol., 2020, vol. 164, pp. 2726–2744. https://doi.org/10.1016/j.ijbiomac.2020.08.153
Fan, P., Zeng, Y., Dionisio Zaldivar, S., Agüero, L., and Wang, S., Chitosan-based hemostatic hydrogels: the concept, mechanism, application, and prospect. The concept, mechanism, application, and prospects, Molecules, 2023, vol. 28, no. 3, pp. 1473–1483. https://doi.org/10.3390/molecules28031473
Graça, M., Miguel, S., Cabral, C., and Correia, I., Hyaluronic acid—Based wound dressings: A review, Carbohydr. Polym., 2020, vol. 241, p. 116364. https://doi.org/10.1016/j.carbpol.2020.116364
Gula, N., Marhitych, V., Goridko, T., Artamonov, M., Zhukov, A., and Klimashevskyi, V., UA Patent No. 81861, 2008.
Hong, F., Qiu, P., Wang, Y., Ren, P., Liu, J., Zhao, J., and Gou, D., Chitosan-based hydrogels: From preparation to applications, a review, Food Chem.: X, 2024, vol. 21, p. 101095. https://doi.org/10.1016/j.fochx.2023.101095
Hudz, I., Chernyshenko, V., Kasatkina, L., Urvant, L., Klimashevskyi, V., Tkachenko, O., Kosiakova, H., Hula, N., and Platonova, T., N-stearoylethanolamine inhibits integrin-mediated activation, aggregation, and adhesion of human platelets, J. Pharmacol. Exp. Ther., 2022, vol. 383, no. 1, pp. 2–10. https://doi.org/10.1124/jpet.122.001084
Kirwale, S., Sharma, S., and Roy, A., Chitosan, chondroitin sulfate, and hyaluronic acid based in-situ forming scaffold for efficient cell grafting, Int. J. Biol. Macromol., 2023, vol. 225, pp. 938–951. https://doi.org/10.1016/j.ijbiomac.2022.11.157
Kittilukkana, A., Sanit, J., and Pilapong, C., Reproposing neutral red as a colorimetric probe for quantitative assessment of lysosomal clearance in neuroblastoma cell line, ChemistrySelect, 2024, vol. 9, p. e202303856. https://doi.org/10.1002/slct.202303856
Kosiakova, H., Berdyshev, A., Dosenko, V., Drevytska, T., Herasymenko, O., and Hula, N., The involvement of peroxisome proliferator-activated receptor gamma (PPARγ) in anti-inflammatory activity of N-stearoylethanolamine, Heliyon, 2022, vol. 8, no. 11, pp. e11336–6. https://doi.org/10.1016/j.heliyon.2022.e11336
Kuznietsova, H., Byelinska, I., Dziubenko, N. et al. Suppression of systemic inflammation and signs of acute and chronic cholangitis by multi-kinase inhibitor 1-(4-Cl-benzyl)-3-chloro-4-(CF3-phenylamino)-1H-pyrrole-2,5-dione, Mol. Cell Biochem., 2021, vol. 476, pp. 3021–3035. https://doi.org/10.1007/s11010-021-04144-y
Kosiakova, H., Berdyshev, A., Horid’ko, T., Meged, O., Klimashevsky, V., Matsokha, R., Asmolkova, O., Kvitnitskaya-Ryzhova, V., Luhovskyi, T., Klymenko, S., and Hula, N., N-Stearoylethanolamine exerts cardioprotective effects in old rats, Curr. Aging Sci., 2024, vol. 17, no. 2, pp. 144–155. https://doi.org/10.2174/0118746098275323231226073348
Lootsik, M., Bilyy, R., Lutsyk, M., and Stoika, S., Preparation of chitosan with high blood clotting activity and its hemostatic potential assessment, Biotechnol. Acta, 2015, vol. 8, no. 6, pp. 32–40. https://doi.org/10.15407/biotech8.06.032
Lootsik, M., Bilyy, R., Lutsyk, M., and Stoika, R., Ukraine Patent No. 112716, 2016.
Lootsik, M., Manko, N., Gromyko, O., Tistechok, S., Lutsyk, M., and Stoika, R., Honeybee chitosan-melanin complex: isolation and investigation of antimicrobial activity, Ukr. Biochem. J., 2020, vol. 92, no. 6, pp. 143–153. https://doi.org/10.15407/ubj92.06.143
Lootsik, M., Manko, N., Bilyy, R., Lootsik, Jr. M., and Stoika, R., Multifunctional chitosan-based hydrogels: characterization and evaluation of biocompatibility and biodegradability in vitro, Ukr. Biochem. J., 2022, vol. 94, no. 2, pp. 76–84. https://doi.org/10.15407/ubj94.02.076
Maia, J., Fonseca, B., Teixeira, N., and Correia-da-Silva, G., Unveiling the angiogenic effects of cannabinoids: Enhancers or inhibitors?, Biochem. Pharmacol., 2023, vol. 215, p. 115686. https://doi.org/10.1016/j.bcp.2023.115686
Manko, N., Lootsik, M., Antonyuk, V., Ivasechko, I., Skorohyd, N., Kosiakova, H., Mehed, O., Horidko, I., Hula, N., Klyuchivska, O., Panchuk, R., Po-khodylo, N., Barabash, O., Dumych, T., and Stoika, R., Ukr. Biochem. J., 2024, vol. 96, no. 1, pp. 80–95. https://doi.org/10.15407/ubj96.01.080
Momin, M., Kurhade, S., Khanekar, P., and Mhatre, S., Novel biodegradable hydrogel sponge containing curcumin and honey for wound healing, J. Wound Care, 2016, vol. 25, no. 6, pp. 364–372. https://doi.org/10.12968/jowc.2016.25.6.364
Murakami, K., Ishihara, M., Aoki, H., Nakamura, S., Nakamura, S., Yanagibayashi, S., Takikawa, M., Kishimoto, S., Yokoe, H., Kiyosawa, T., and Sato, Y., Enhanced healing of mitomycin C-treated healing-impaired wounds in rats with hydrosheets composed of chitin/chitosan, fucoidan, and alginate as wound dressings, Wound Repair Regener., 2010, vol. 18, no. 5, pp. 478–485. https://doi.org/10.1111/j.1524-475X.2010.00606.x
Ningrum, D., Hanif, W., Mardhian, D., and Asri, A., In vitro biocompatibility of hydrogel polyvinyl alcohol/moringa oleifera leaf extract/graphene oxide for wound dressing, Polymers, 2023, vol. 15, no. 2, p. 468. https://doi.org/10.3390/polym15020468
Ou, Y. and Tian, M., Advances in multifunctional chitosan-based self-healing hydrogels for biomedical applications, J. Mater. Chem. B, 2021, vol. 9, no. 38. https://doi.org/10.1039/d1tb01363g
Pérez-Recalde, M., Ruiz Arias, I., and Hermida, E., Could essential oils enhance biopolymers performance for wound healing? A systematic review, Phytomedicine, 2018, vol. 38, pp. 57–65. https://doi.org/10.1016/j.phymed.2017.09.024
Prasathkumar, M. and Sadhasivam, S., Chitosan/Hyaluronic acid/Alginate and an assorted polymer loaded with honey, plant, and marine compounds for progressive wound healing—Know-how, Int. J. Biol. Macromol., 2021, vol. 186, pp. 656–685. https://doi.org/10.1016/j.ijbiomac.2021.07.067
Shivakumar, P., Gupta, M., Jayakumar, R., and Gowda, D., Prospection of chitosan and its derivatives in wound healing: Proof of patent analysis (2010–2020), Int. J. Biol. Macromol., 2021, vol. 184, pp. 701–712. https://doi.org/10.1016/j.ijbiomac.2021.06.086
Singh, N., Aery, S., Juneja, S., Kumari, L., Lone, M.S., Dar, A.A., Pawar, S.V., Mehta, S.K., and Dan, A., Chitosan hydrogels with embedded thermo-and pH-responsive microgels as a potential carrier for controlled release of drugs, ACS Appl. Biol. Mater., 2022, vol. 5, pp. 3487–3499. https://doi.org/10.1021/acsabm.2c00401
Šitum, K., Bokulić, A., Ivetić-Tkalčević, V., Parnham, M., Čužić, S., and Đurić, K., Comparison of systemic inflammatory and hematology parameters in normal C57Bl/6 and genetically diabetic db/db mice during local wound repair, Biochem. Med., 2007, vol. 17, pp. 85–93. https://doi.org/10.11613/BM.2007.009
Yuan, N., Shao, K., Huang, S., and Chen, C., Chitosan, alginate, hyaluronic acid and other novel multifunctional hydrogel dressings for wound healing: A review, Int. J. Biol. Macromol., 2023, vol. 240, p. 124321. https://doi.org/10.1016/j.ijbiomac.2023.124321