SUMMARY. There is a large group of bacterial FtsZ inhibitors, the biological activity of which has been confirmed bio-chemically. However, the sites of protein-ligand interaction for most of them remain unknown, significantly complicating the further search and combinatorial design of FtsZ inhibitors. This study presents the results of bioinformatic analysis of bacterial FtsZ effectors, the interaction of which has been proven and documented in the ChEMBL database of biologically active molecules. Using an integrated approach, based on chemo- and bioinformatic methods, and AI-based predictions, 23 inhibitors of Nucleotide-Binding Site (NBS), as well as 16 new effectors of the Inter-Domain Cleft (IDC) site, were identified.
Keywords: FtsZ, nucleotide-binding site, inter-domain cleft, effectors, ligand-protein interaction, FragFp, pharmacophore search, molecular docking, artificial intelligence

Full text and supplemented materials
Free full text: PDFReferences
Abramson, J., Adler, J., Dunger, J., et al., Addendum: Accurate structure prediction of biomolecular interactions with AlphaFold 3, Nature, 2024, vol. 636, no. 8042, p. E4. https://doi.org/10.1038/s41586-024-08416-7
Adams, D.W. and Errington J., Bacterial cell division: Assembly, maintenance and disassembly of the Z ring, Nat. Rev. Microbiol., 2009, vol. 7, no. 9, pp. 642–653. https://doi.org/10.1038/nrmicro2198
Agu, P.C., Afiukwa, C.A., Orji, O.U., et al., Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management, Sci. Rep., 2023, vol. 13, no. 1, p. 13398. https://doi.org/10.1038/s41598-023-40160-2
Ahdritz, G., Bouatta, N., Floristean, C., et al., OpenFold: Retraining AlphaFold2 yields new insights into its learning mechanisms and capacity for generalization, Nat. Methods, 2024, vol. 21, no. 8, pp. 1514–1524. https://doi.org/10.1038/s41592-024-02272-z
Bellaver, E.H., da Costa, I.M., Redin, E.E., et al., The fermented milk can be a natural ally against obesity? Investigation of bovine milk fermentation by Lacticaseibacillus casei LBC 237, Screening, and in silico predictions of bioactive peptides for obesity control, Intell. Pharm., 2024. https://doi.org/10.1016/j.ipha.2024.05.009
Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E., The Protein Data Bank, Nucleic Acids Res., 2000, vol. 28, no. 1, pp. 235–242. https://doi.org/10.1093/nar/28.1.235
Berman, H., Henrick, K., and Nakamura, H., Announcing the worldwide Protein Data Bank, Nat. Struct. Biol., 2003, vol. 10, no. 12, p. 980. https://doi.org/10.1038/nsb1203-980
Brunst, S., Kramer, J.S., Kilu, W., Heering, J., Pollinger, J., Hiesinger, K., George, S., Steinhilber, D., Merk, D., and Proschak, E., Systematic assessment of fragment identification for multitarget drug design, Chem. Med. Chem., 2021, vol. 16, no. 7, pp. 1088–1092. https://doi.org/10.1002/cmdc.202000858
Burcham, C.L., Doherty, M.F., Peters, B.G., et al., Pharmaceutical digital design: From chemical structure through crystal polymorph to conceptual crystallization process, Cryst. Growth Des., 2024, vol. 24, no. 13, pp. 5417–5438. https://doi.org/10.1021/acs.cgd.3c01390
Burley, S.K., Bhatt, R., Bhikadiya, C., et al., Updated resources for exploring experimentally-determined PDB structures and computed structure models at the RCSB Protein Data Bank, Nucleic Acids Res., 2025, vol. 53, no. D1, pp. D564–D574. https://doi.org/10.1093/nar/gkae1091
Carro, L., Recent progress in the development of small-molecule FtsZ inhibitors as chemical tools for the development of novel antibiotics, Antibiotics, 2019, vol. 8, no. 4, p. 217. https://doi.org/10.3390/antibiotics8040217
Chen, X., Zhang, Y., et al., Protenix – Advancing Structure Prediction through a Comprehensive AlphaFold3 Reproduction, bioRxiv, 2025. https://doi.org/10.1101/2025.01.08.631967
de Boer, P., Crossley, R.E., and Rothfield, L.I., FtsZ is a major component of the division ring in Escherichia coli, Proc. Natl. Acad. Sci. U. S. A., 1992, vol. 89, no. 24, pp. 10317–10321. https://doi.org/10.1073/pnas.89.24.10317
Demchuk, O.N. and Blium, Ia.B., Phylogenetic tree of bacterial and eucaryotic FtsZ-proteins based on the homology of their primary sequences, Tsitol. Genet., 2005, vol. 39, no. 4, pp. 3–12. https://pubmed.ncbi.nlm.nih.gov/16396325/.
Demchuk, O., Karpov, P., Raspor, P., et al., Molecular modelling of FtsZ proteins based on their homology in Escherichia coli and Mycobacterium tuberculosis as the key stage of rational design of new antituberculous compounds, Acta Biol. Slov., 2011, vol. 54, no. 2, pp. 13–29. https://doi.org/10.14720/abs.54.2.15476
Demchuk, O.M., Karpov, P.A., and Blume, Ya.B., Docking small ligands to molecule of the plant FtsZ Protein: Application of the CUDA technology for faster computations, Cytol. Genet., 2012, vol. 46, no. 3, pp. 172–179. https://doi.org/10.3103/S0095452712030048
Elfmann, C. and Stülke, J., PAE viewer: A webserver for the interactive visualization of the predicted aligned error for multimer structure predictions and crosslinks, Nucleic Acids Res., 2023, vol. 51, no. W1, pp. W404–W410. https://doi.org/10.1093/nar/gkad350
Fujimori, M., Sogawa, H., Ota, S., Karpov, P., Shulga, S., Blume, Ya., and Kurita, N., Specific interactions between mycobacterial FtsZ protein and curcumin derivatives: Molecular docking and ab initio molecular simulations, Chem. Phys. Lett., 2017, vol. 12, p. 692. https://doi.org/10.1016/j.cplett.2017.12.045
Gonzalez-Pastor, R., Carrera-Pacheco, S.E., Zúñiga-Miranda, J., et al., Current landscape of methods to evaluate antimicrobial activity of natural extracts, Molecules, 2023, vol. 28, no. 3, p. 1068. https://doi.org/10.3390/molecules28031068
Haranahalli, K., Tong, S., and Ojima, I., Recent advances in the discovery and development of antibacterial agents targeting the cell-division protein FtsZ, Bioorg. Med. Chem., 2016, vol. 24, no. 24, pp. 6354–6369. https://doi.org/10.1016/j.bmc.2016.05.003
Hou, S., Wieczorek, S.A., Kaminski, T.S., Ziebacz, N., Tabaka, M., Sorto, N.A., Foss, M.H., Shaw, J.T., Thanbichler, M., Weibel, D.B., Nieznanski, K., Holyst, R., and Garstecki, P., Characterization of Caulobacter crescentus FtsZ protein using dynamic light scattering, J. Biol. Chem., 2012, vol. 287, no. 28, pp. 23878–23886. https://doi.org/10.1074/jbc.M111.309492
Hsu, K.C., Chen, Y.F., Lin, S.R., and Yang, J.M., iGEMDOCK: A graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis, BMC Bioinformatics, 2011, vol. 12, no. 1, p. S33. https://doi.org/10.1186/1471-2105-12-S1-S33
Jones, G., Willett, P., Glen, R.C., Leach, A.R., and Taylor, R., Development and validation of a genetic algorithm for flexible docking, J. Mol. Biol., 1997, vol. 267, no. 3, pp. 727–748. https://doi.org/10.1006/jmbi.1996.0897
Jumper, J., Evans, R., Pritzel, A., et al., Highly accurate protein structure prediction with AlphaFold, Nature, 2021, vol. 596, no. 7873, pp. 583–589. https://doi.org/10.1038/s41586-021-03819-2
Karpov, P.A., Demchuk, O.M., Britsun, V.M., et al., New imidazole inhibitors of mycobacterial FtsZ: The way from high-throughput molecular screening in Grid up to in vitro verification, Sci. Innovations, 2016, vol. 12, no. 3, pp. 43–55. https://doi.org/10.15407/scine12.03.043
Karpov, P.A., Ozheriedov, D.S., Ozheredov, S.P., et al., Identification of FtsZ interdomain cleft effectors based on pharmacophore search and molecular docking, Cytol. Genet., 2024, vol. 58, no. 5, pp. 371–384. https://doi.org/10.3103/S0095452724050050
Korb, O., Stützle, T., and Exner, T.E., Empirical scoring functions for advanced protein-ligand docking with PLANTS, J. Chem. Inf. Model., 2009, vol. 49, no. 1, pp. 84–96. https://doi.org/10.1021/ci800298z
Läppchen, T., Pinas, V.A., Hartog, A.F., et al., Probing FtsZ and tubulin with C8-substituted GTP analogs reveals differences in their nucleotide binding sites, Chem. Biol., 2008, vol. 15, no. 2, pp. 189–199. https://doi.org/10.1016/j.chembiol.2007.12.013
Leung, A.K., Lucile, W.E., et al., Structure of Mycobacterium tuberculosis FtsZ reveals unexpected, G protein-like conformational switches, J. Mol. Biol., 2004, vol. 342, no. 3, pp. 953–970. https://doi.org/10.1016/j.jmb.2004.07.061
Li, Z., Trimble, M.J., Brun, Y.V., and Jensen, G.J., The structure of FtsZ filaments in vivo suggests a force-generating role in cell division, EMBO J., 2007, vol. 26, no. 22, pp. 4694–4708. https://doi.org/10.1038/sj.emboj.7601895
Liebeschuetz, J.W., Cole, J.C., and Korb, O., Pose prediction and virtual screening performance of GOLD scoring functions in a standardized test, J. Comput.-Aided Mol. Des., 2012, vol. 26, no. 6, pp. 737–748. https://doi.org/10.1007/s10822-012-9551-4
López-López, E., Naveja, J.J., and Medina-Franco, J.L., DataWarrior: An evaluation of the open-source drug discovery tool, Expert Opin. Drug Discovery, 2019, vol. 14, no. 4, pp. 335–341. https://doi.org/10.1080/17460441.2019.1581170
Lu, C., Reedy, M., and Erickson, H.P., Straight and curved conformations of FtsZ are regulated by GTP hydrolysis. J. Bacteriol., 2000, vol. 182, no. 1, pp. 164–170. https://doi.org/10.1128/JB.182.1.164-170.2000
Ma, S. and Ma, S., The development of FtsZ inhibitors as potential antibacterial agents, ChemMedChem, 2012, vol. 7, no. 7, pp. 1161–1172. https://doi.org/10.1002/cmdc.201200156
Mariani, V., Biasini, M., Barbato, A., and Schwede, T., l-DDT: A local superposition-free score for comparing protein structures and models using distance difference tests, Bioinformatics, 2013, vol. 29, no. 21, pp. 2722–2728. https://doi.org/10.1093/bioinformatics/btt473
Mathew, B., Hobrath, J.V., and Ross, L., Screening and development of new inhibitors of FtsZ: Insights into targeting the cytoskeleton, J. Med. Chem., 2016, vol. 59, no. 24, pp. 10861–10880. https://doi.org/10.1021/acs.jmedchem.6b01065
Matsui, T., Han, X., Yu, J., et al., Structural change in FtsZ Induced by intermolecular interactions between bound GTP and the T7 loop, J. Biol. Chem., 2014, vol. 289, no. 6, pp. 3501–3509. https://doi.org/10.1074/jbc.M113.514901
Matsui, T., Yamane, J., Mogi, N., et al., Structural reorganization of the bacterial cell-division protein FtsZ from Staphylococcus aureus, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2012, vol. 68, no. Pt 9, pp. 1175–1188. https://doi.org/10.1107/S0907444912022640
Mooij, W.T. and Verdonk, M.L., General and targeted statistical potentials for protein-ligand interactions, Proteins, 2005, vol. 61, no. 2, pp. 272–287. https://doi.org/10.1002/prot.20588
Nyporko, A.Y. and Blume, Y., Comparative analysis of secondary structure of tubulins and FtsZ proteins, Biopolym. Cell, 2001, vol. 17, pp. 61–69. https://doi.org/10.7124/bc.00059E
Oliva, M.A., Cordell, S.C., and Löwe, J., Structural insights into FtsZ protofilament formation, Nat. Struct. Mol. Biol., 2004, vol. 11, no. 12, pp. 1243–1250. https://doi.org/10.1038/nsmb855
Oliva, M.A., Trambaiolo, D., and Löwe, J., Structural insights into the conformational variability of FtsZ, J. Mol. Biol., 2007, vol. 373, no. 5, pp. 1229–1242. https://doi.org/10.1016/j.jmb.2007.08.056
Osolodkin, D.I., Radchenko, E.V., Orlov, A.A., et al., Progress in visual representations of chemical space, Expert Opin. Drug Discovery, 2015, vol. 10, no. 9, pp. 959–973. https://doi.org/10.1517/17460441.2015.1060216
Ozheriedov, D.S. and Karpov, P.A., Structural profile of ligand-based inhibition of bacterial FtsZ, Fakt. Eksp. Evol. Org., 2023, vol. 32, pp. 142–147. https://doi.org/10.7124/FEEO.v32.1551
Ozheredov, D.S. and Karpov, P.A., Comparative analysis of allosteric rearrangements in FtsZ protein structure induced by benzamide and 4-hydroxycoumarine compounds, Fakt. Eksp. Evol. Org., 2024, vol. 35, pp. 164–169. https://doi.org/10.7124/FEEO.v35.1679
Ozheriedov, D.S., Ozheredov, S.P., Demchuk, O.M., et al., Ligand-induced variability of the FtsZ rrotein interdomain site pocket, Cytol. Genet., 2024, vol. 58, pp. 275–282. https://doi.org/10.3103/S0095452724040078
Peters, P.C., Migocki, M.D., Thoni, C., and Harry, E.J., A new assembly pathway for the cytokinetic Z ring from a dynamic helical structure in vegetatively growing cells of Bacillus subtilis, Mol. Microbiol., 2007, vol. 64, no. 2, pp. 487–499. https://doi.org/10.1111/j.1365-2958.2007.05673.x
Ramirez-Diaz, D.A., Merino-Salomón, A., Meyer, F., Heymann, M., Rivas, G., Bramkamp, M., and Schwille, P., FtsZ induces membrane deformations via torsional stress upon GTP hydrolysis, Nat. Commun., 2021, vol. 12, no. 1, p. 3310. https://doi.org/10.1038/s41467-021-23387-3
Rayevsky, A., Samofalova, D., Ishchenko, L., et al., Structure-based virtual screening and biological evaluation of novel inhibitors of mycobacterium Z-ring formation, J. Cell Biochem., 2022, vol. 123, no. 5, pp. 852–862. https://doi.org/10.1002/jcb.30232
Raymond, A., Lovell, S., Lorimer, D., et al., Combined protein construct and synthetic gene engineering for heterologous protein expression and crystallization using Gene Composer, BMC Biotechnol., 2009, vol. 9, p. 37. https://doi.org/10.1186/1472-6750-9-37
Ruiz, F.M., Huecas, S., Santos-Aledo, A., et al., FtsZ filament structures in different nucleotide states reveal the mechanism of assembly dynamics, PLoS Biol., 2022, vol. 20, no. 3, p. e3001497. https://doi.org/10.1371/journal.pbio.3001497
Sander, T., Freyss, J., von Korff, M., and Rufener, C., DataWarrior: An open-source program for chemistry aware data visualization and analysis, J. Chem. Inf. Model., 2015, vol. 55, no. 2, pp. 460–473. https://doi.org/10.1021/ci500588j
Schumacher, M.A., Ohashi, T., Corbin, L., et al., High-resolution crystal structures of Escherichia coli FtsZ bound to GDP and GTP, Acta Crystallogr., Sect. F: Struct. Biol. Cryst. Commun., 2020, vol. 76, no. 2, pp. 94–102. https://doi.org/10.1107/S2053230X20001132
Small, E. and Addinall, S.G., Dynamic FtsZ polymerization is sensitive to the GTP to GDP ratio and can be maintained at steady state using a GTP-regeneration system, Microbiology, 2003, vol. 149, no. 8, pp. 2235–2242. https://doi.org/10.1099/mic.0.26126-0
Sogawa, H., Sato, R., Suzuki, K., Tomioka, S., Shinzato, T., Karpov, P., Shulga, S., Blume, Y., and Kurita, N., Binding sites of Zantrin inhibitors to the bacterial cell division protein FtsZ: Molecular docking and ab initio molecular orbital calculations, Chem. Phys., 2020, vol. 530, p. 110603. https://doi.org/10.1016/j.chemphys.2019.110603
Sunseri, J. and Koes, D.R., Pharmit: Interactive exploration of chemical space, Nucleic Acids Res., 2016, vol. 44, no. W1, pp. W442–W448. https://doi.org/10.1093/nar/gkw287
Thanedar, S. and Margolin, W., FtsZ exhibits rapid movement and oscillation waves in helix-like patterns in Escherichia coli, Curr. Biol., 2004, vol. 14, no. 13, pp. 1167–1173. https://doi.org/10.1016/j.cub.2004.06.048
Tripathy, S. and Sahu, S.K., FtsZ inhibitors as a new genera of antibacterial agents, Bioorg. Chem., 2019, vol. 91, p. 103169. https://doi.org/10.1016/j.bioorg.2019.103169
van Ooij, C., Z-ring Achilles’ heel for MRSA, Nat. Rev. Microbiol., 2008, vol. 6, p. 799. https://doi.org/10.1038/nrmicro2016
Wagstaff, J.M, Tsim, M., Oliva, M.A., et al., A polymerization-associated structural switch in ftsz that enables treadmilling of model filaments, mBio, 2017, vol. 8, no. 3, pp. e00254–e003217. https://doi.org/10.1128/mBio.00254-17
Walker, B.E., Männik, J., and Männik, J., Transient Membrane-Linked FtsZ Assemblies Precede Z-Ring Formation in Escherichia coli, Curr. Biol., 2020, vol. 30, no. 3, pp. 499–508. https://doi.org/10.1016/j.cub.2019.12.023
Xu, J. and Zhang, Y., How significant is a protein structure similarity with TM-score = 0.5?, Bioinformaticsm, 2010, vol. 26, no. 7, pp. 889–895. https://doi.org/10.1093/bioinformatics/btq066
Yang, J.M. and Chen, C.C., GEMDOCK: A generic evolutionary method for molecular docking, Proteins, 2004, vol. 55, no. 2, pp. 288–304. https://doi.org/10.1002/prot.20035
Zdrazil, B., Fifteen years of ChEMBL and its role in cheminformatics and drug discovery, J. Cheminf., 2025, vol. 17, no. 1, p. 32. https://doi.org/10.1186/s13321-025-00963-z