Emerging research has identified ferroptosis as a novel form of programmed cell death, and Arachidonic acid 15-lipoxygenase-1 (ALOX15) stands out as a pivotal gene in mediating this process. Nonetheless, the role of ALOX15 in human tumors remains elusive. We utilized TIMER 2.0 to investigate the differential expression profiles of ALOX15 between pan-cancer and normal tissues. Further data from the TCGA, GEPIA, UALCAN, HPA, and CPTAC databases were analyzed to verify the levels of mRNA, protein expression, and promoter methylation across various cancer types. The survival prognosis, clinical features, and genetic alterations of ALOX15 were also evaluated. GO/KEGG enrichment analyses and single-cell transcriptome sequencing were employed for functional enrichment analysis. The gene mutation of ALOX15 and its prognostic value were analyzed using the cBioPortal platform. Finally, the relationship between ALOX15 and immune cell infiltration, Immune Checkpoints (ICKs), genomic instability, and drug sensitivity was further explored using GSCA. Our findings revealed that the transcription and protein expression of ALOX15 were significantly reduced in HNSC, LUAD, LUSC, SKCM, KICH, and THCA, while they were up-regulated in ESCA, LIHC, PRAD, and UCEC. Notably, the expression of ALOX15 had prognostic value for certain cancers, including LUAD, LUSC, LIHC, KIRC, HNSC, THCA, and LGG. Additionally, ALOX15 expression was markedly correlated with clinical characteristics, immune cell infiltration, ICKs, genomic instability, and antitumor drug sensitivity in various tumors. Gene mutations of ALOX15 and their prognostic value were discovered in pan-cancers. Furthermore, GO/KEGG analysis and single-cell transcriptome sequencing indicated that ALOX15 was significantly associated with cancer-related pathways. Our comprehensive pan-cancer analysis shed light on the role and significance of ALOX15, suggesting its potential as a prognostic and immunotherapeutic marker for pan-cancer. These findings may provide new directions and evidence for cancer therapeutics.
Keywords: ferroptosis, bioinformatics, prognosis, pan-cancer, ALOX15, biological functions, immune

Full text and supplemented materials
References
Abdalkader, M., Lampinen, R., Kanninen, K.M., Malm, T.M., and Liddell, J.R., Targeting Nrf2 to suppress ferroptosis and mitochondrial dysfunction in neurodegeneration, Front. Neurosci., 2018, vol. 12, p. 466.
Aboueshia, M., Hussein, M.H., Attia, A.S., Swinford, A., Miller, P., Omar, M., Toraih, E.A., Saba, N., Safah, H., Duchesne, J., and Kandil, E., Cancer and COVID-19: analysis of patient outcomes, Future O-ncol., 2021, vol. 17, pp. 3499–3510.
Ai, L., Xu, A., and Xu, J., Roles of PD-1/PD-L1 pathway: signaling, cancer, and beyond, Adv. Exp. Med. Biol., 2020, vol. 1248, pp. 33–59.
Aran, D., Hu, Z., and Butte, A.J., xCell: digitally portraying the tissue cellular heterogeneity landscape, Genome B-iol., 2017, vol. 18, p. 220.
Baharom, F., Ramirez-Valdez, R.A., Khalilnezhad, A., Khalilnezhad, S., Dillon, M., Hermans, D., Fus-sell, S., Tobin, K.K.S., Dutertre, C.A., Lynn, G.M., Müller, S., Ginhoux, F., Ishizuka, A.S., and Seder, R.A., Systemic vaccination induces CD8+ T cells and remodels the tumor microenvironment, Cell, 2022, vol. 185, pp. 4317–4332.e15.
Bajbouj, K., Shafarin, J., and Hamad, M., Estrogen-dependent disruption of intracellular iron metabolism augments the cytotoxic effects of doxorubicin in select breast and ovarian cancer cells, Cancer Manage. Res., 2019, vol. 11, pp. 4655–4668.
Becht, E., Giraldo, N.A., Lacroix, L., Buttard, B., Elarouci, N., Petitprez, F., Selves, J., Laurent-Puig, P., Sautès-Fridman, C., Fridman, W.H., and de Reyniès, A., Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression, Genome Biol., 2016, vol. 17, p. 218.
Bejarano, L., Jordāo, M.J.C., and Joyce, J.A., Therapeutic targeting of the tumor microenvironment, Cancer Discovery, 2021, vol. 11, pp. 933–959.
Bi, K., He, M.X., Bakouny, Z., Kanodia, A., Napolita-no, S., Wu, J., Grimaldi, G., Braun, D.A., Cuoco, M.S., Mayorga, A., DelloStritto, L., Bouchard, G., Steinharter, J., Tewari, A.K., Vokes, N.I., Shannon, E., Sun, M., Park, J., Chang, S.L., McGregor, B.A., Haq, R., Denize, T., Signoretti, S., Guerriero, J.L., Vigneau, S., Rozenblatt-Rosen, O., Ro-tem, A., Regev, A., Choueiri, T.K., and Van Allen, E.M., Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma, Cancer Cell, 2021, vol. 39, pp. 649–661.e5.
Brinkman, E.K. and van Steensel, B., Rapid quantitative evaluation of CRISPR genome editing by TIDE and TIDER, Methods Mol. Biol., 2019, vol. 1961, pp. 29–44.
Cerami, E., Gao, J., Dogrusoz, U., Gross, B.E., Sumer, S.O., Aksoy, B.A., Jacobsen, A., Byrne, C.J., Heuer, M.L., Larsson, E., Antipin, Y., Reva, B., Goldberg, A.P., Sander, C., and Schultz, N., The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data, Cancer Discovery, 2012, vol. 2, pp. 401–404.
Chandrashekar, D.S., Bashel, B., Balasubramanya, S.A.H., Creighton, C.J., Ponce-Rodriguez, I., Chakravar-thi, B.V.S.K., and Varambally, S., UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses, Neoplasia, 2017, vol. 19, pp. 649–658.
Chang, W.T., Bow, Y.D., Fu, P.J., Li, C.Y., and Wu, C.Y., A marine terpenoid, heteronemin, induces both the apoptosis and ferroptosis of hepatocellular carcinoma cells and involves the ROS and MAPK pathways, Oxid. Med. Cell Longevity, 2021, p. 7689045
Chen, L., Li, X., Liu, L., Yu, B., Xue, Y., and Liu, Y., Erastin sensitizes glioblastoma cells to temozolomide by restraining xCT and cystathionine-γ-lyase function, On-col. Rep., 2015, vol. 33, pp. 1465–1474.
Chen, B., Khodadoust, M.S., Liu, C.L., Newman, A.M., and Alizadeh, A.A., Profiling tumor infiltrating immune cells with CIBERSORT, Methods Mol. Biol., 2018, vol. 1711, pp. 243–259.
Chen, M., Linstra, R., and van Vugt, M.A.T.M., Genomic instability, inflammatory signaling and response to cancer immunotherapy, Biochim. Biophys. Acta Rev. Cancer, 2022, vol. 1877, p. 188661.
Cheng, L., Jin, X., Lu, W.Y., Sun, R., Cao, Y.Q., Wei, Y.X., Wang, L.Q., He, X.Y., Yuan, T., Meng, J.X., and Zhao, M.F., Effect and involved mechanism of RSL3-induced ferroptosis in acute leukemia cells MOLM13 and drug-resistant cell lines, Zhongguo Shiyan Xueyexue Zazhi, 2021, vol. 29, pp. 1109–1118.
Cheng, Q., Bao, L., Li, M., Chang, K., and Yi, X., Erastin synergizes with cisplatin via ferroptosis to inhibit ovarian cancer growth in vitro and in vivo, J. Obstet. Gynaecol. Res., 2021, vol. 47, pp. 2481–2491.
Chitambar, C.R., Al-Gizawiy, M.M., Alhajala, H.S., Pechman, K.R., Wereley, J.P., Wujek, R., Clark, P.A., Kuo, J.S., Antholine, W.E., and Schmainda, K.M., Gallium maltolate disrupts tumor iron metabolism and retards the growth of glioblastoma by inhibiting mitochondrial function and ribonucleotide reductase, Mol. Cancer Ther., 2018, vol. 17, pp. 1240–1250.
Darvin, P., Toor, S.M., Sasidharan Nair, V., and Elkord, E., Immune checkpoint inhibitors: recent progress and potential biomarkers, Exp. Mol. Med., 2018, vol. 50, pp. 1–11.
Datar, I., Sanmamed, M.F., Wang, J., Henick, B.S., Choi, J., Badri, T., Dong, W., Mani, N., Toki, M., Mejias, L.D., Lozano, M.D., Perez-Gracia, J.L., Velcheti, V., Hellmann, M.D., Gainor, J.F., McEachern, K., Jenkins, D., Syrigos, K., Politi, K., Gettinger, S., and Schalper, K.A., Expression analysis and significance of PD-1, LAG-3, and TIM-3 in human non-small cell lung cancer using spatially resolved and multiparametric single-cell analysis, Clin. Cancer Res., 2019, vol. 25, pp. 4663–4673.
Duska, L.R., Java, J.J., Cohn, D.E., and Burger, R.A., Risk factors for readmission in patients with ovarian, fallopian tube, and primary peritoneal carcinoma who are receiving front-line chemotherapy on a clinical trial (GOG 218): an NRG oncology/gynecologic oncology group study (ADS-1236), Gynecol. Oncol., 2015, vol. 139, pp. 221–227.
Farhood, B., Najafi, M., and Mortezaee, K., CD8+ cytotoxic T lymphocytes in cancer immunotherapy: A review, J. Cell. Physiol, 2019, vol. 234, pp. 8509–8521.
Forder, A., Hsing, C.Y., Trejo Vazquez, J., and Garnis, C., Emerging role of extracellular vesicles and cellular communication in metastasis, Cells, 2021, vol. 10, p. 3429.
Fu, C. and Jiang, A., Dendritic cells and CD8 T cell immunity in tumor microenvironment, Front. Immunol., 2018, vol. 9, p. 3059.
Gai, C., Yu, M., Li, Z., Wang, Y., Ding, D., Zheng, J., Lv, S., Zhang, W., and Li, W., Acetaminophen sensitizing erastin-induced ferroptosis via modulation of Nrf2/heme oxygenase-1 signaling pathway in non-small-cell lung cancer, J. Cell. Physiol., 2020, vol. 235, pp. 3329–3339.
Gajewski, T.F., Schreiber, H., and Fu, Y.X., Innate and adaptive immune cells in the tumor microenvironment, Nat. Immunol., 2013, vol. 14, pp. 1014–1022.
Ghoochani, A., Hsu, E.C., Aslan, M., Rice, M.A., Nguyen, H.M., et al., Ferroptosis inducers are a novel therapeutic approach for advanced prostate cancer, Cancer Res., 2019, vol. 81, pp. 1583–1594.
Guo, J., Xu, B., Han, Q., Zhou, H., Xia, Y., Gong, C., Dai, X., Li, Z., and Wu, G., Ferroptosis: A novel anti-tumor action for cisplatin, Cancer Res. Treat., 2018, vol. 50, pp. 445–460.
Hong, Y., Ren, T., Wang, X., Liu, X., Fei, Y., et al., APR-246 triggers ferritinophagy and ferroptosis of diffuse large B-cell lymphoma cells with distinct TP53 mutations, Leukemia, 2022, vol. 36, pp. 2269–2280.
Jochems, C. and Schlom, J., Tumor-infiltrating immune cells and prognosis: the potential link between conventional cancer therapy and immunity, Exp. Biol. Med., 2011, vol. 236, pp. 567–579.
Kim, S.S., Shen, S., Miyauchi, S., Sanders, P.D., Franiak-Pietryga, I., Mell, L., Gutkind, J.S., Cohen, E.E. W., Califano, J.A., and Sharabi, A.B., B cells improve overall survival in HPV-associated squamous cell carcinomas and are activated by radiation and PD-1 blockade, Clin. Cancer Res., 2020, vol. 26, pp. 3345–3359.
Kong, N., Chen, X., Feng, J., Duan, T., Liu, S., Sun, X., Chen, P., Pan, T., Yan, L., Jin, T., Xiang, Y., Gao, Q., Wen, C., Ma, W., Liu, W., Zhang, M., Yang, Z., Wang, W., Zhang, R., Chen, B., and Tao, W., Baicalin induces ferroptosis in bladder cancer cells by downregulating FTH1, Acta Pharm. Sin. B, 2021, vol. 11, pp. 4045–4054.
Kuroda, H., Jamiyan, T., Yamaguchi, R., Kakumoto, A., Abe, A., Harada, O., Enkhbat, B., and Masunaga, A., Prognostic value of tumor-infiltrating B lymphocytes and plasma cells in triple-negative breast cancer, Breast Cancer, 2021, vol. 28, pp. 904–914.
Lanczky, A. and Gyorffy, B., Web-based survival analysis tool tailored for medical research (KMplot): Development and implementation, J. Med. Int. Res., 2021, vol. 23, p. e27633.
Lee, J., You, J.H., Shin, D., and Roh, J.L., Inhibition of glutaredoxin 5 predisposes cisplatin-resistant head and neck cancer cells to ferroptosis, Theranostics, 2020, vol. 10, pp. 7775–7786.
Li, T., Fan, J., Wang, B., Traugh, N., Chen, Q., Liu, J.S., Li, B., and Liu, X.S., TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells, Cancer Res., 2017, vol. 77, pp. e108–e110.
Li, B., Chan, H.L., and Chen, P., Immune checkpoint inhibitors: basics and challenges, Curr. Med. Chem., 2019, vol. 26, pp. 3009–3025.
Li, X., Ma, N., Xu, J., Zhang, Y., Yang, P., Su, X., Xing, Y., An, N., Yang, F., Zhang, G., Zhang, L., and Xing, Y., Targeting ferroptosis: pathological mechanism and treatment of ischemia-reperfusion injury, Oxid. Med. Cell. Longevity, 2021, p. 1587922.
Li, Z.J., Dai, H.Q., Huang, X.W., Feng, J., Deng, J.H., Wang, Z.X., Yang, X.M., Liu, Y.J., Wu, Y., Chen, P.H., Shi, H., Wang, J.G., Zhou, J., and Lu, G.D., Artesunate synergizes with sorafenib to induce ferroptosis in hepatocellular carcinoma, Acta Pharmacol. Sin., 2021, vol. 42, pp. 301–310.
Liu, L., Bai, X., Wang, J., Tang, X.R., Wu, D.H., Du, S.S., Du, X.J., Zhang, Y.W., Zhu, H.B., Fang, Y., Guo, Z.Q., Zeng, Q., Guo, X.J., Liu, Z., and Dong, Z.Y., Combination of TMB and CNA stratifies prognostic and predictive responses to immunotherapy across metastatic cancer, Clin. Cancer Res., 2019, vol. 25, pp. 7413–7423.
Liu, Q. and Wang, K., The induction of ferroptosis by impairing STAT3/Nrf2/GPx4 signaling enhances the sensitivity of osteosarcoma cells to cisplatin, Cell Biol. Int., 2019, vol. 43, pp. 1245–1256.
Liu, C.J., Hu, F.F., Xie, G.Y., Miao, Y.R., Li, X.W., Zeng, Y., and Guo, A.Y., GSCA: an integrated platform for gene set cancer analysis at genomic, pharmacogenomic and immunogenomic levels, Brief Bioinf., 2023, vol. 24, p. bbac558.
Lu, T., Zhang, Z., Pan, X., Zhang, J., Wang, X., Wang, M., Li, H., Yan, M., and Chen, W., Caveolin-1 promotes cancer progression via inhibiting ferroptosis in head and neck squamous cell carcinoma, J. Oral Pathol. Med., 2022, vol. 51, pp. 52–62.
Ma, S., Dielschneider, R.F., Henson, E.S., Xiao, W., Choquette, T.R., Blankstein, A.R., Chen, Y., and Gibson, S.B., Ferroptosis and autophagy induced cell death occur independently after siramesine and lapatinib treatment in breast cancer cells, PLoS One, 2017, vol. 12, p. e018292.
Ma, X.H., Liu, J.H., Liu, C.Y., Sun, W.Y., Duan, W.J., Wang, G., Kurihara, H., He, R.R., Li, Y.F., Chen, Y., and Shang, H., ALOX15-launched PUFA-phospholipids peroxidation increases the susceptibility of ferroptosis in ischemia-induced myocardial damage, Signal Transduction Targeted Ther., 2022, vol. 7, p. 288.
Müller, T., Dewitz, C., Schmitz, J., Schroder, A.S., Bräsen, J.H., Stockwell B.R., Murphy, J.M., Kunzendorf, U., and Krautwald, S., Necroptosis and ferroptosis are alternative cell death pathways that operate in acute kidney failure, Cell. Mol. Life Sci., 2017, vol. 74, pp. 3631–3645.
Neophytou, C.M., Panagi, M., Stylianopoulos, T., and Papageorgis, P., The role of tumor microenvironment in cancer metastasis: molecular mechanisms and therapeutic opportunities, Cancers, 2021, vol. 13, p. 2053.
Palmeri, M., Mehnert, J., Silk, A.W., Jabbour, S.K., Ganesan, S., Popli, P., Riedlinger, G., Stephenson, R., de Meritens, A.B., Leiser, A., Mayer, T., Chan, N., Spencer, K., Girda, E., Malhotra, J., Chan, T., Subbiah, V., and Groisberg, R., Real-world application of tumor mutational burden-high (TMB-high) and microsatellite instability (MSI) confirms their utility as immunotherapy biomarkers, ESMO Open, 2022, vol. 7, p. 100336.
Park, K.J., Kim, J., Testoff, T., Adams, J., Poklar, M., Zborowski, M., Venere, M., and Chalmers, J.J., Quantitative characterization of the regulation of iron metabolism in glioblastoma stem-like cells using magnetophoresis, Biotechnol. Bioeng., 2019, vol. 116, pp. 1644–1655.
Patil, N.S., Nabet, B.Y., Muller, S., Koeppen, H., Zou, W., Giltnane, J., Au-Yeung, A., Srivats, S., Cheng, J.H., Takahashi, C., de Almeida, P.E., Chitre, A.S., Grogan, J.L., Rangell, L., Jayakar, S., Peterson, M., Hsia, A.W., O’Gorman, W.E., Ballinger, M., Banchereau, R., and Shames, D.S., Intratumoral plasma cells predict outcomes to PD-L1 blockade in non-small cell lung cancer, Cancer Cell, 2022, vol. 40, pp. 289–300.e4.
Plattner, C., Finotello, F., and Rieder, D., Chapter Ten - Deconvoluting tumor-infiltrating immune cells from RNA-seq data using quanTIseq, Methods Enzymol., 2020, vol. 636, pp. 261–285.
Pontén, F., Gry, M., Fagerberg, L., Lundberg, E., Asplund, A., Berglund, L., Oksvold, P., Björling, E., Hober, S., Kampf, C., Navani, S., Nilsson, P., Ottosson, J., Persson, A., Wernérus, H., Wester, K., and Uhlén, M., A global view of protein expression in human cells, tissues, and organs, Mol. Syst. Biol., 2009 vol. 5, p. 337.
Quail, D.F. and Joyce, J.A., Microenvironmental regulation of tumor progression and metastasis, Nat. Med., 2013, vol. 19, pp. 1423–37.
Racle, J. and Gfeller, D., EPIC: A tool to estimate the proportions of different cell types from bulk gene expression data, Methods Mol. Biol., 2020, vol. 2120, pp. 233–248.
Ralli, M., Botticelli, A., Visconti, I.C., Angeletti, D., Fiore, M., Marchetti, P., Lambiase, A., de Vincentiis, M., and Greco, A., Immunotherapy in the treatment of metastatic melanoma: current knowledge and future directions, J. Immunol. Res., 2020, 9235638.
Reck, M., Remon, J., and Hellmann, M.D., First-line immunotherapy for non-small-cell lung cancer, J. Clin. Oncol., 2022, vol. 40, pp. 586–597.
Roh, J.L., Kim, E.H., Jang, H., and Shin, D., Aspirin plus sorafenib potentiates cisplatin cytotoxicity in resistant head and neck cancer cells through xCT inhibition, Free Radical Biol. Med., 2017, vol. 104, pp. 1–9.
Roma-Rodrigues, C., Mendes, R., Baptista, P.V., and Fernandes, A.R., Targeting Tumor Microenvironment for Cancer Therapy, Int. J. Mol. Sci., 2019, vol. 20, p. 840.
Shimasaki, N., Jain, A., and Campana, D., NK cells for cancer immunotherapy, Nat. Rev. Drug Discovery, 2020, vol. 19, pp. 200–218.
Shintoku, R., Takigawa, Y., Yamada, K., Kubota, C., Yoshimoto, Y., Takeuchi, T., Koshiishi, I., and Torii, S., Lipoxygenase-mediated generation of lipid peroxides enhances ferroptosis induced by erastin and RSL3, Cancer Sci., 2017, vol. 108, pp. 2187–2194.
Siegel, R.L., Miller, K.D., Wagle, N.S., and Jemal, A., Cancer statistics, 2023, CA: Cancer J. Clin., 2023, vol. 73, pp. 17–48.
Speyer, G., Mahendra, D., Tran, H.J., Kiefer, J., Schreiber, S.L., Clemons, P.A., Dhruv, H., Berens, M., and Kim, S., Differential pathway dependency discovery associated with drug response across cancer cell lines, Pac. Symp. Biocomput., 2017, vol. 22, pp. 497–508.
Stockwell, B.R., Friedmann Angeli, J.P., Bayir, H., Bush, A.I., Conrad, M., et al., Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease, Cell, 2017, vol. 171, pp. 273–285.
Sun, J., Zhou, C., Zhao, Y., Zhang, X., Chen, W., Zhou, Q., Hu, B., Gao, D., Raatz, L., Wang, Z., Nelson, P.J., Jiang, Y., Ren, N., Bruns, C.J., and Zhou, H., Quiescin sulfhydryl oxidase 1 promotes sorafenib-induced ferroptosis in hepatocellular carcinoma by driving EGFR endosomal trafficking and inhibiting NRF2 activation, Redox Biol., 2021, vol. 41, p. 101942.
Szklarczyk, D., Gable, A.L., Nastou, K.C., Lyon, D., Kirsch, R., Pyysalo, S., Doncheva, N.T., Legeay, M., Fang, T., Bork, P., Jensen, L.J., and von Mering, C., The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets, Nucleic Acids Res., 2021, vol. 49, pp. D605–D612.
Tan, S., Li, D., and Zhu, X., Cancer immunotherapy: Pros, cons and beyond, Biomed. Pharmacother., 2020, vol. 124, p. 109821.
Tang, Z., Li, C., Kang, B., Gao, G., Li, C., and Zhang, Z., GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses, Nucleic Acids Res., 2017, vol. 45, pp. W98–W102.
Thompson, H.J., Neil, E.S., and McGinley, J.N., Pre-clinical insights into the iron and breast cancer hypothesis, Biomedicines, 2021, vol. 9, p. 1652.
Topalian, S.L., Taube, J.M., Anders, R.A., and Pardoll, D.M., Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy, Nat. Rev. Cancer., 2016, vol. 16, pp. 275–287.
Tsaur, I., Brandt, M.P., Juengel, E., Manceau, C., and Ploussard, G., Immunotherapy in prostate cancer: new horizon of hurdles and hopes, World J. Urol., 2021, vol. 39, pp. 1387–1403.
Ullrich, A. and Miller, A., Global response to the burden of cancer: The WHO approach, in American Society of Clinical Oncology Educational Book, Am. Soc. Clin. Oncol., 2014, pp. e311–e315.
Van Coillie, S., Wiernicki, B., and Xu, J., Molecular and Cellular Functions of CTLA-4, Adv. Exp. Med. Biol., 2020, vol. 1248, pp. 7–32.
Vela, D., Iron metabolism in prostate cancer; from basic science to new therapeutic strategies, Front. Oncol., 2018, vol. 8, p. 547.
Von Holle, A., O’Brien, K.M., Sandler, D.P., Janicek, R., and Weinberg, C.R., Association Between Serum Iron Biomarkers and Breast Cancer, Cancer Epidemiol., Biomarkers Prev., 2021, vol. 30, pp. 422–425.
Wang, F., Liu, A., Bai, R., Zhang, B., Jin, Y., Guo, W., Li, Y., Gao, J., and Liu, L., Hepcidin and iron metabolism in the pathogenesis of prostate cancer, J. BUON, 2017, vol. 22, pp. 1328–1332.
Wang, Z., Ding, Y., Wang, X., Lu, S., Wang, C., He, C., Wang, L., Piao, M., Chi, G., Luo, Y., and Ge, P., Pseudolaric acid B triggers ferroptosis in glioma cells via activation of Nox4 and inhibition of xCT, Cancer Lett., 2018, vol. 428, pp. 21–33.
Wang, L., Zhang, Y., Yang, J., Liu, L., Yao, B., Tian, Z., and He, J., The knockdown of ETV4 inhibits the papillary thyroid cancer development by promoting ferroptosis upon SLC7A11 downregulation, DNA Cell Biol., 2021, vol. 40, pp. 1211–1221.
Wang, J., Song, Z., Ren, L., Zhang, B., Zhang, Y., Yang, X., Liu, T., Gu, Y., and Feng, C., Pan-cancer analysis supports MAPK12 as a potential prognostic and immunotherapeutic target in multiple tumor types, including in THCA, Oncol. Lett., 2022, vol. 24, p. 445.
Whiteaker, J.R., Halusa, G.N., Hoofnagle, A.N., Sharma, V., MacLean, B., Yan, P., Wrobel, J.A., Kennedy, J., Mani, D.R., Zimmerman, L.J., Meyer, M.R., Mesri, M., and Rodriguez, H., Clinical Proteomic Tumor Analysis Consortium (CPTAC) CPTAC assay portal: a repository of targeted proteomic assays, Nat. Methods, 2014, vol. 11, pp. 703–704.
Wu, S.Y., Fu, T., Jiang, Y.Z., and Shao, Z.M., Natural killer cells in cancer biology and therapy, Mol. Cancer, 2020, vol. 19, p. 120.
Xiaofei, J., Mingqing, S., Miao, S., Yizhen, Y., Shuang, Z., et al., Oleanolic acid inhibits cervical cancer Hela cell proliferation through modulation of the ACSL4 ferroptosis signaling pathway, Biochem. Biophys. Res. Commun., 2012, vol. 545, pp. 81–88.
Xie, G., Dong, H., Liang, Y., Ham, J.D., Rizwan, R., and Chen, J., CAR-NK cells: A promising cellular immunotherapy for cancer, EBioMedicine, 2020, vol. 59, p. 102975.
Xu, M., Li, Y., Li, W., Zhao, Q., Zhang, Q., Le, K., Huang, Z., and Yi, P., Immune and stroma related genes in breast cancer: a comprehensive analysis of tumor microenvironment based on the cancer genome atlas (TCGA) database, Front. Med., 2020, vol. 7, p. 64.
Yamaguchi, Y., Kasukabe, T., and Kumakura, S., Piperlongumine rapidly induces the death of human pancreatic cancer cells mainly through the induction of ferroptosis, Int. J. Oncol, 2018, vol. 52, pp. 1011–1022.
Yang, W., Soares, J., Greninger, P., Edelman, E.J., Lightfoot, H., Forbes, S., Bindal, N., Beare, D., Smith, J.A., Thompson, I.R., Ramaswamy, S., Futreal, P.A., Haber, D.A., Stratton, M.R., Benes, C., McDermott, U., and Garnett, M.J., Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells, Nucleic Acids Res., 2013, vol. 41, pp. D955–61.
Yang, Y., Sun, S., Xu, W., Zhang, Y., Yang, R., Ma, K., Zhang, J., and Xu, J., Piperlongumine inhibits thioredoxin reductase 1 by targeting selenocysteine residues and sensitizes cancer cells to erastin, Antioxidants (Basel), 2022, vol. 11, p. 710.
Ye, S., Xu, M., Zhu, T., Chen, J., Shi, S., Jiang, H., Zheng, Q., Liao, Q., Ding, X., and Xi, Y., Cytoglobin promotes sensitivity to ferroptosis by regulating p53-YAP1 axis in colon cancer cells, J. Cell. Mol. Med., 2021, vol. 25, pp. 3300–3311.
Yi, M., Li, A., Zhou, L., Chu, Q., Luo, S., and Wu, K., Immune signature-based risk stratification and prediction of immune checkpoint inhibitor’s efficacy for lung adenocarcinoma, Cancer Immunol. Immunother., 2021, vol. 70, pp. 1705–1719.
Yuan, H., Yan, M., Zhang, G., Liu, W., Deng, C., Liao, G., Xu, L., Luo, T., Yan, H., Long, Z., Shi, A., Zhao, T., Xiao, Y., and Li, X., CancerSEA: a cancer single-cell state atlas, Nucleic Acids Res., 2019, vol. 47, pp. D900–D908.
Zhang, J., Endres, S., and Kobold, S., Enhancing tumor T cell infiltration to enable cancer immunotherapy, Immunotherapy, 2019, vol. 11, pp. 201–213.
Zhang, Y., Kong, Y., Ma, Y., Ni, S., Wikerholmen, T., Xi, K., Zhao, F., Zhao, Z., Wang, J., Huang, B., Chen, A., Yao, Z., Han, M., Feng, Z., Hu, Y., Thorsen, F., Wang, J., and Li, X., Loss of COPZ1 induces NCOA4 mediated autophagy and ferroptosis in glioblastoma cell lines, Oncogene, 2021, vol. 40, pp. 1425–1439.
Zhou, N. and Bao, J., FerrDb: a manually curated resource for regulators and markers of ferroptosis and ferroptosis-disease associations, Database