SUMMARY. The homeostasis and survival of a plant cell is determined by the stability of its internal environment due to the controlled movement of various molecules and ions into the cell and intercellular space and are provided the plasma membrane. Aquaporin membrane channel proteins are one of the important components of the plant cells. Plants are characterized by a large number and variety of these proteins, which have different localization, properties and specificity. The functions of aquaporins are not limited to the transport of water, ions, and individual small molecules, these membrane proteins also play an important role in the development of the reaction-response of plants to the action of biotic and abiotic stress factors. Unfavorable growth conditions cause a change in the activity of aquaporins at transcriptional, translational, and posttranscriptional levels. In the review was analyzed modern scientific date at the role of aquaporins in the implementation of the plant’s protective response to the action of various abiotic factors that change the osmotic balance and intracellular homeostasis. Also it was characterized the effect of carbon nanomaterials (graphene, single- and multi-walled nanotubes, fullerene) on the regulation of the functional activity of aquaporins of various subfamilies and the expression of relevant genes under the influence of abiotic stresses on plants.
Keywords: aquaporins, stress, plants, C60 fullerene, graphene, single- and multi-walled nanotubes

Full text and supplemented materials
Free full text: PDFReferences
Adeel, M., Farooq, T., White, J.C., Hao, Y., He, Z., and Rui, Y., Carbon-based nanomaterials suppress tobacco mosaic virus (TMV) infection and induce resistance in Nicotiana benthamiana, J. Hazard. Mater., 2021, vol. 404, p. 124167. https://doi.org/10.1016/j.jhazmat.2020.124167
Aguirre-Becerra, H., Feregrino-Perez, A.A., Esquivel, K., Perez-Garcia, C.E., Vazquez-Hernandez, M.C., and Mariana-Alvarado, A., Nanomaterials as an alternative to increase plant resistance to abiotic stresses, Front. Plant Sci., 2022, vol. 13, p. 1023636. https://doi.org/10.3389/fpls.2022.1023636
Alghuthaymi, M.A., C.R., P.R., Kalia, A., Bhardwaj, K., Bhardwaj, P., Abd-Elsalam, K.A., Valis, M., and Kuca, K., Nanohybrid antifungals for control of plant diseases: current status and future perspectives, J. Fungi, 2021, vol. 7, no. 1, p. 48. https://doi.org/10.3390/jof7010048
Arnspang, E.C., Sengupta, P., Mortensen, K.I., Jensen, H.H., Hahn, U., Jensen, E. B.V., Lippincott-Schwartz, J., and Nejsum, L.N., Regulation of plasma membrane nanodomains of the water channel aquaporin-3 revealed by fixed and live photoactivated localization microscopy, Nano Lett., 2019, vol. 19, no. 2, pp. 699–707. https://doi.org/10.1021/acs.nanolett.8b03721
Ayadi, M., Brini, F., and Masmoudi, K., Overexpression of a wheat aquaporin gene, TdPIP2;1, enhances salt and drought tolerance in transgenic durum wheat cv. Maali, Int. J. Mol. Sci., 2019, vol. 20, no. 10, p. 2389. https://doi.org/10.3390/ijms20102389
Beamer, Z.G., Routray, P., Choi, W.G., Spangler, M.K., Lokdarshi, A., and Roberts, D.M., Aquaporin family lactic acid channel NIP2;1 promotes plant survival under low oxygen stress in Arabidopsis, Plant Physiol., 2021, vol. 187, no. 4, pp. 2262–2278. https://doi.org/10.1093/plphys/kiab196
Bezerra-Neto, J.P., de Araujo, F.C., Ferreira-Neto, J.R.C., da Silva, M.D., Pandolfi, V., Aburjaile, F.F., Sakamoto, T., de Oliveira Silva, R.L., Kido, E.A., Barbosa Amorim, L.L., Ortega, J.M., and Benko-Iseppon, A.M., Plant aquaporins: diversity, evolution and biotechnological applications, Curr. Protein Peptide Sci., 2019, vol. 20, no. 4, pp. 368–395. https://doi.org/10.2174/1389203720666181102095910
Bienert, G.P. and Chaumont, F., Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide, Biochim. Biophys. Acta, 2014, vol. 1840, no. 5, pp. 1596–1604. https://doi.org/10.1016/j.bbagen.2013.09.017
Bordin, J.R., Ilha, A.V., Cortes, P.R.B., Oliveira, W.d.S., Pinheiro, L.A., de Moraes, E.E., Grison, T.G., and Kohler, M.H., Molecular modeling of aquaporins and artificial transmembrane channels: a mini-review and perspective for plants, Theor. Exp. Plant Physiol., 2023. https://doi.org/10.1007/s40626-023-00284-2
Borišev, M., Borišev, I., Župunski, M., Arsenov, D., Pajević, S., Ćurčić, Ž., Vasin, J., and Djordjevic, A., Drought impact is alleviated in sugar beets (Beta vulgaris L.) by foliar application of fullerenol nanoparticles, PloS One, 2016, vol. 11, no. 11, p. e0166248. https://doi.org/10.1371/journal.pone.0166248
Borovaya, M., Naumenko, A., Horiunova, I., Plokhovska, S., Blume, Y., and Yemets, A., “Green” synthesis of Ag2S nanoparticles, study of their properties and bioimaging applications, Appl. Nanosci., 2020, vol. 10, no. 12, pp. 4931–4940. https://doi.org/10.1007/s13204-020-01365-3
Boursiac, Y., Chen, S., Luu, D. T., Sorieul, M., van den Dries, N., and Maurel, C., Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression, Plant Physiol., 2005, vol. 139, no. 2, pp. 790–805. https://doi.org/10.1104/pp.105.065029
Burlaka, O.M., Pirko, Y.V., Yemets, A.I., and Blume Ya.B., Plant genetic transformation using carbon nanotubes for DNA delivery, Cytol. Genet., 2015, vol. 49, pp. 349–357. https://doi.org/10.3103/S009545271506002X
Chaumont, F., Moshelion, M., and Daniels, M.J., Regulation of plant aquaporin activity, Biol. Cell, 2005, vol. 97, no. 10, pp. 749–764. https://doi.org/10.1042/BC20040133
Chevalier, A.S. and Chaumont, F., Trafficking of plant plasma membrane aquaporins: multiple regulation levels and complex sorting signals, Plant Cell Physiol., 2015, vol. 56, no. 5, pp. 819–829. https://doi.org/10.1093/pcp/pcu203
Cui, X.H., Hao, F.S., Chen, H., Chen, J., and Wang, X.C., Expression of the Vicia faba VfPIP1 gene in Arabidopsis thaliana plants improves their drought resistance, J. Plant Res., 2008, vol. 121, no. 2, pp. 207–214. https://doi.org/10.1007/s10265-007-0130-z
Danielson, J.A. and Johanson, U., Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens, BMC Plant Biol., 2008, vol. 8, p. 45. https://doi.org/10.1186/1471-2229-8-45
Darabi, S. and Mohammadi, M.T., Fullerenol nanoparticles decrease ischaemia-induced brain injury and oedema through inhibition of oxidative damage and aquaporin-1 expression in ischaemic stroke, Brain Injury, 2017, vol. 31, no. 8, pp. 1142–1150. https://doi.org/10.1080/02699052.2017.1300835
Finiuk N., Buziashvili, A., Burlaka, O., Zaichenko A., Mitina, N., Miagkota, O., Lobachevska, O., Stoika, R., Blume, Ya., and Yemets, A., Investigation of novel oligoelectrolyte polymer carriers for their capacity of DNA delivery into plant cells, Plant Cell, Tissue Organ Cult., 2017, vol. 131, no. 1, pp. 27–39. https://doi.org/10.1007/s11240-017-1259-7
Gattolin, S., Sorieul, M., and Frigerio, L., Mapping of tonoplast intrinsic proteins in maturing and germinating Arabidopsis seeds reveals dual localization of embryonic TIPs to the tonoplast and plasma membrane, Mol. Plant, 2011, vol. 4, no. 1, pp. 180–189. https://doi.org/10.1093/mp/ssq051
Groszmann, M., Osborn, H.L., and Evans, J.R., Carbon dioxide and water transport through plant aquaporins, Plant Cell Environ., 2017, vol. 40, no. 6, pp. 938–961. https://doi.org/10.1111/pce.12844
Güvensoy-Morkoyun, A., Velioğlu, S., Ahunbay, M.G., and Tantekin-Ersolmaz, Ş.B., Desalination potential of aquaporin-inspired functionalization of carbon nanotubes: bridging between simulation and experiment, ACS Appl. Mater. Interfaces, 2022, vol. 14, no. 24, pp. 28174–28185. https://doi.org/10.1021/acsami.2c03700
Haghighi, M. and Teixeira da Silva, J.A., The effect of carbon nanotubes on the seed germination and seedling growth of four vegetable species, J. Crop Sci. Biotechnol., 2014, vol. 17, pp. 201–208. https://doi.org/10.1007/s12892-014-0057-6
Hatami, M., Hadian, J., and Ghorbanpour, M., Mechanisms underlying toxicity and stimulatory role of single-walled carbon nanotubes in Hyoscyamus niger during drought stress simulated by polyethylene glycol, J. Hazard. Mater., 2017, vol. 324, pp. 306–320. https://doi.org/10.1016/j.jhazmat.2016.10.064
Ishikawa, F., Suga, S., Uemura, T., Sato, M.H., and Maeshima, M., Novel type aquaporin SIPs are mainly localized to the ER membrane and show cell-specific expression in Arabidopsis thaliana, FEBS Lett., 2005, vol. 579, no. 25, pp. 5814–5820. https://doi.org/10.1016/j.febslet.2005.09.076
Kaldenhoff, R. and Fischer, M., Aquaporins in plants, Acta Physiol., 2006, vol. 187, nos. 1–2, pp. 169–176. https://doi.org/10.1111/j.1748-1716.2006.01563.x
Kaldenhoff, R. and Fischer, M., Functional aquaporin diversity in plants, Biochim. Biophys. Acta, 2006, vol. 1758, no. 8, pp. 1134–1141. https://doi.org/10.1016/j.bbamem.2006.03.012
Kapilan, R., Vaziri, M. and Zwiazek, J.J., Regulation of aquaporins in plants under stress, Biol. Res., 2018, vol. 51, p. 4. https://doi.org/10.1186/s40659-018-0152-0
Khan, M.N., Mobin, M., Abbas, Z.K., AlMutairi, K.A., and Siddiqui, Z.H., Role of nanomaterials in plants under challenging environments, Plant Physiol. Biochem., 2017, vol. 110, pp. 194–209. https://doi.org/10.1016/j.plaphy.2016.05.038
Khodakovskaya, M.V., de Silva, K., Biris, A.S., Dervishi, E., and Villagarcia, H., Carbon nanotubes induce growth enhancement of tobacco cells, ACS Nano, 2012, vol. 6, no. 3, pp. 2128–2135. https://doi.org/10.1021/nn204643g
Kolupaev, Yu.E., Karpets, Yu.V., Shkliarevskyi M.A., Yastreb T.O., Plohovska S.H., Yemets A.I., and Blume, Ya.B., Gasotransmitters in plants: mechanisms of participation in adaptive responses, Open Agric. J., 2022, vol. 16, p. e187433152207050. https://doi.org/10.2174/18743315-v16-e2207050
Kolupaev, Yu.E., Yemets, A.I., Yastreb, T.O., and Blume, Y.B., The role of nitric oxide and hydrogen sulfide in regulation of redox homeostasis at extreme temperatures in plants, Front. Plant Sci., 2023, vol. 14, p. 1128439. https://doi.org/10.3389/fpls.2023.1128439
Kong, H., Meng, X., Akram, N.A., Zhu, F., Hu, J., and Zhang, Z., Seed priming with fullerol improves seed germination, seedling growth and antioxidant enzyme system of two winter wheat cultivars under drought stress, Plants, 2023, vol. 12, no. 6, p. 1417. https://doi.org/10.3390/plants12061417
Kou, E., Yao, Y., Yang, X., Song, S., Li, W., Kang, Y., Qu, S., Dong, R., Pan, X., Dongna, Li, Zhang, H., and Lei, B., Regulation mechanisms of carbon dots in the development of lettuce and tomato, ACS Sustainable Chem. Eng., 2021, vol. 9, no. 2, pp. 944–953. https://doi.org/10.1021/acssuschemeng.0c08308
Kovač, T., Marček, T., Šarkanj, B., Borišev, I., Ižaković, M., Jukić, K., Lončarić, A., Krska, T., Sulyok, M., and Krska, R., Fullerol C60(OH)24 Nanoparticles and drought impact on wheat (Triticum aestivum L.) during growth and infection with Aspergillus flavus, J. Fungi, 2021, vol. 7, no. 3, p. 236. https://doi.org/10.3390/jof7030236
Kurowska, M., TIP Aquaporins in Plants: Role in Abiotic Stress Tolerance, IntechOpen, 2021. https://doi.org/10.5772/intechopen.94165
Kurowska, M.M., Aquaporins in cereals-important players in maintaining cell homeostasis under abiotic stress, Genes, 2021, vol. 12, no. 4, p. 477. https://doi.org/10.3390/genes12040477
Kurowska, M.M., Wiecha, K., Gajek, K., and Szarejko, I., Drought stress and re-watering affect the abundance of TIP aquaporin transcripts in barley, PloS One, 2019, vol. 14, no. 12, p. e0226423. https://doi.org/10.1371/journal.pone.0226423
Lahiani, M.H., Dervishi, E., Chen, J., Nima, Z., Gaume, A., Biris, A.S., and Khodakovskaya, M.V., Impact of carbon nanotube exposure to seeds of valuable crops, ACS Appl. Mater. Interfaces, 2013. vol. 5, no. 16, pp. 7965–7973. https://doi.org/10.1021/am402052x
Laloux, T., Junqueira, B., Maistriaux, L.C., Ahmed, J., Jurkiewicz, A., and Chaumont, F., Plant and mammal aquaporins: same but different, Int. J. Mol. Sci., 2018, vol. 19, no. 2, p. 521. https://doi.org/10.3390/ijms19020521
Li, J., Ban, L., Wen, H., Wang, Z., Dzyubenko, N., Chapurin, V., Gao, H., and Wang, X., An aquaporin protein is associated with drought stress tolerance, Biochem. Biophys. Res. Commun., 2015, vol. 459, no. 2, pp. 208–213. https://doi.org/10.1016/j.bbrc.2015.02.052
Li, T., Sun, W., Wang, X., Feng, J., and Ma, D., Cell-like behaviors of dynamic graphene bubbles with fast water transport, ACS Omega, 2020, vol. 5, no. 43, pp. 28249–28254. https://doi.org/10.1021/acsomega.0c04150
Li, Y., Li, Z., Aydin, F., Quan, J., Chen, X., Yao, Y. C., Zhan, C., Chen, Y., Pham, T. A., and Noy, A., Water-ion permselectivity of narrow-diameter carbon nanotubes, Sci. Adv., 2020, vol. 6, no. 38, p. eaba9966. https://doi.org/10.1126/sciadv.aba9966
Li, Y., Liu, M., Yang, X., Zhang, Y., Hui, H., Zhang, D., and Shu, J., Multi-walled carbon nanotubes enhanced the antioxidative system and alleviated salt stress in grape seedlings, Sci. Hortic., 2022, vol. 293, p. 110698. https://doi.org/10.1016/j.scienta.2021.110698
Liu, J., Li, R., and Yang, B., Carbon dots: a new type of carbon-based nanomaterial with wide applications, ACS Central Sci., 2020, vol. 6, pp. 2179–2195. https://doi.org/10.1021/acscentsci.0c01306
Lv, X., Sha, H., Ye, Z., Wang, Y., and Mao, B., Nanomaterials in plant management: functions, mechanisms and prospects, Environ. Sci. Nano, 2023, vol. 10, pp. 3232–3252. https://doi.org/10.1039/D3EN00014A
Maeshima, M., Ishikawa, F., ER membrane aquaporins in plants, Pflugers Archiv, 2008, vol. 456, no. 4, pp. 709–716. https://doi.org/10.1007/s00424-007-0363-7
Martinez-Ballesta, M.C. and Carvajal, M., New challenges in plant aquaporin biotechnology, Plant Sci., 2014, vol. 217–218, pp. 71–77. https://doi.org/10.1016/j.plantsci.2013.12.006
Martínez-Ballesta, M.C., Zapata, L., Chalbi, N., and Carvajal, M., Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity, J. Nanobiotechnol., 2016, vol. 14, no. 1, p. 42. https://doi.org/10.1186/s12951-016-0199-4
Martínez-Ballesta, M.C., Chelbi, N., Lopez-Zaplana, A., and Carvajal, M., Discerning the mechanism of the multiwalled carbon nanotubes effect on root cell water and nutrient transport, Plant Physiol. Biochem., 2020, vol. 146, pp. 23–30. https://doi.org/10.1016/j.plaphy.2019.11.008
Maurel C., Plant aquaporins: Novel functions and regulation properties, FEBS Lett., 2007, vol. 581, no. 12, pp. 2227–2236. https://doi.org/10.1016/j.febslet.2007.03.021
Maurel, C., Boursiac, Y., Luu, D. T., Santoni, V., Shahzad, Z., and Verdoucq, L., Aquaporins in plants, Physiol. Rev., 2015, vol. 95, no. 4, pp. 1321–1358. https://doi.org/10.1152/physrev.00008.2015
Mukarram, M., Khan, M.M.A., Kurjak, D., Lux, A., and Corpas, F.J., Silicon nanoparticles (SiNPs) restore photosynthesis and essential oil content by upgrading enzymatic antioxidant metabolism in lemongrass (Cymbopogon flexuosus) under salt stress, Front. Plant Sci., 2023, vol. 14, p. 1116769. https://doi.org/10.3389/fpls.2023.1116769
Ozfidan-Konakci, C., Alp, F.N., Arikan, B., Balci, M., Parmaksizoglu, Z., Yildiztugay, E., and Cavusoglu, H., The effects of fullerene on photosynthetic apparatus, chloroplast-encoded gene expression, and nitrogen assimilation in Zea mays under cobalt stress, Physiol. Plant., 2022, vol. 174, no. 3, p. e13720. https://doi.org/10.1111/ppl.13720
Ozfidan-Konakci, C., Alp, F.N., Arikan, B., Elbasan, F., Cavusoglu, H., and Yildiztugay, E., The biphasic responses of nanomaterial fullerene on stomatal movement, water status, chlorophyll a fluorescence transient, radical scavenging system and aquaporin-related gene expression in Zea mays under cobalt stress, Sci. Total Environ., 2022, vol. 826, p. 154213. https://doi.org/10.1016/j.scitotenv.2022.154213
Pandey, A.K., Sun, T., Wu, X., Wang, Z., Jiang, R., Zhang, P., Fang P., and Xu P., Aquaporin genes in garden pea and their regulation by the nano-antioxidant fullerol in imbibing embryos under osmotic stress, Veg. Res., 2023, vol. 3, p. 10. https://doi.org/10.48130/VR-2023-0010
Plohovska S.H., Krasylenko Y.A., and Yemets A.I., Nitric oxide modulates actin filament organization in Arabidopsis thaliana primary root cells at low temperatures, Cell Biol. Int., 2019, vol. 43, no. 9, pp. 1020–1030. https://doi.org/10.1002/cbin.10931
Pommerrenig, B., Diehn, T.A., and Bienert, G.P., Metalloido-porins: Essentiality of Nodulin 26-like intrinsic proteins in metalloid transport, Plant Sci., 2015, vol. 238, pp. 212–227. https://doi.org/10.1016/j.plantsci.2015.06.002
Ponnu, J., Surviving hypoxia: aquaporin-like protein NIP2;1 mediates lactic acid transport, Plant Physiol., 2021, vol. 186, no. 4, pp. 1767–1769. https://doi.org/10.1093/plphys/kiab254
Prylutska, S.V., Franskevych, D.V., and Yemets, A.I., Cellular biological and molecular genetic effects of carbon nanomaterials in plants, Cytol. Genet., 2022, vol. 56, no. 4, pp. 351–360. https://doi.org/10.3103/S0095452722040077
Prylutska, S.V., Tkachenko, T.A., and Tkachenko, V.V., Application of carbon nanomaterials for the regulation of stress resistance in agricultural plants, Nanosist., Nanomater., Nanotehnol., 2023, vol. 21, no. 4, pp. 923–944.
Rao, D.P. and Srivastava, A., Enhancement of seed germination and plant growth of wheat, maize, peanut and garlic using multiwalled carbon nanotubes, Eur. Chem. Bull., 2014, vol. 3, no. 5, pp. 502–504. https://doi.org/10.17628/ECB.2014.3.502
Rezaei Cherati, S., Shanmugam, S., Pandey, K., and Khodakovskaya, M.V., Whole-transcriptome responses to environmental stresses in agricultural crops treated with carbon-based nanomaterials, ACS Appl. Biol. Mater., 2021, vol. 4, no. 5, pp. 4292–4301. https://doi.org/10.1021/acsabm.1c00108
Rodrigues, M.I., Takeda, A.A., Bravo, J.P., and Maia, I.G., The eucalyptus Tonoplast Intrinsic Protein (TIP) gene subfamily: genomic organization, structural features, and expression profiles, Front. Plant Sci., 2016, vol. 7, p. 1810. https://doi.org/10.3389/fpls.2016.01810
Rohatgi, V., Challagulla, N.V., and Pudake, R.N., Current status and future prospects of nanoparticles as plant genetic materials carrier, in Nano-Enabled Agrochemicals in Agriculture, Ghorbanpour, M. and Shahid, M.A., Eds., Academic, 2022, Chapter 23, pp. 407–424. https://doi.org/10.1016/b978-0-323-91009-5.00028-8
Scochera, F., Zerbetto De Palma, G., Canessa Fortuna, A., Chevriau, J., Toriano, R., Soto, G., Zeida, A., and Alleva, K., PIP aquaporin pH-sensing is regulated by the length and charge of the C-terminal region, FEBS J., 2022, vol. 289, no. 1, pp. 246–261. https://doi.org/10.1111/febs.16134
Shelar, A., Nile, S.H., Singh, A.V., Rothenstein, D., Bill, J., Xiao, J., Chaskar, M., Kai, G., and Patil, R., Recent advances in nano-enabled seed treatment strategies for sustainable agriculture: challenges, risk assessment, and future perspectives, Nano-Micro Lett., 2023, vol. 15, no. 1, p. 54. https://doi.org/10.1007/s40820-023-01025-5
Shivaraj, S.M., Deshmukh, R.K., Rai, R., Belanger, R., Agrawal, P.K., and Dash, P.K., Genome-wide identification, characterization, and expression profile of aquaporin gene family in flax (Linum usitatissimum), Sci. Rep., 2017, vol. 7, p. 46137. https://doi.org/10.1038/srep46137
Shivaraj, S.M., Deshmukh, R., Sonah, H., and Belanger, R.R., Identification and characterization of aquaporin genes in Arachis duranensis and Arachis ipaensis genomes, the diploid progenitors of peanut, BMC Genomics, 2019, vol. 20, no. 1, p. 222. https://doi.org/10.1186/s12864-019-5606-4
Shivaraj, S.M., Sharma, Y., Chaudhary, J., Rajora, N., Sharma, S., Thakral, V., Ram, H., Sonah, H., Singla-Pareek, S.L., Sharma, T.R., and Deshmukh, R., Dynamic role of aquaporin transport system under drought stress in plants, Environ. Exp. Bot., 2021, vol. 184, p. 104367. https://doi.org/10.1016/J.ENVEXPBOT.2020.104367
Sonah, H., Deshmukh, R.K., Labbe, C., and Belanger, R.R., Analysis of aquaporins in Brassicaceae species reveals high-level of conservation and dynamic role against biotic and abiotic stress in canola, Sci. Rep., 2017, vol. 7, no. 1, p. 2771. https://doi.org/10.1038/s41598-017-02877-9
Song, L., Nguyen, N., Deshmukh, R.K., Patil, G.B., Prince, S.J., Valliyodan, B., Mutava, R., Pike, S.M., Gassmann, W., and Nguyen, H.T., Soybean TIP gene family analysis and characterization of GmTIP1;5 and GmTIP2;5 water transport activity, Front. Plant. Sci., 2016, vol. 7, p. 1564. https://doi.org/10.3389/fpls.2016.01564
Spadola, G., Sanna, V., Bartoli, J., Carcelli, M., Pelosi, G., Bisceglie, F., Restivo, F. M., Degola, F., and Rogolino, D., Thiosemicarbazone nano-formulation for the control of Aspergillus flavus, Environ. Sci. Pollut. Res. Int., 2020, vol. 27, no. 16, pp. 20125–20135. https://doi.org/10.1007/s11356-020-08532-7
Subotić, A., Jevremović, S., Milošević, S., Trifunović-Momčilov, M., Đurić, M., and Koruga, Đ., Physiological response, oxidative stress assessment and aquaporin genes expression of cherry tomato (Solanum lycopersicum L.) exposed to hyper-harmonized fullerene water complex, Plants, 2022, vol. 11, no. 21, p. 2810. https://doi.org/10.3390/plants11212810
Sun, X., Chen, J., Fan, W., Liu, S., and Kamruzzaman, M., Production of reactive oxygen species via nanobubble water improves radish seed water absorption and the expression of aquaporin genes, Langmuir, 2022, vol. 38, no. 38, pp. 11724–11731. https://doi.org/10.1021/acs.langmuir.2c01860
Tanasienko, I.V., Yemets, A.I, Finiuk, N.S., Stoika, R., and Blume, Y.B., DMAEM-based cationic polymers as novel carriers for DNA delivery into cells, Cell Biol. Int., 2015, vol. 39, no. 3, pp. 243–245. https://doi.org/10.1002/cbin.10381
Wang, L., Zhang, C., Wang, Y., Wang, Y., Yang, C., Lu, M., and Wang C., Tamarix hispida aquaporin ThPIP2;5 confers salt and osmotic stress tolerance to transgenic Tamarix and Arabidopsis, Environ. Exp. Bot., 2018, vol. 152, pp. 158−66. https://doi.org/10.1016/j.envexpbot.2017.05.018
Wang, Y., Zhao, Z., Liu, F., Sun, L., and Hao, F., Versatile roles of aquaporins in plant growth and development, Int. J. Mol. Sci., 2020, vol. 21, no. 24, p. 9485. https://doi.org/10.3390/ijms21249485
Wang, Y., Tian, J., Wang, Z., Li, C., and Li, X., Crop-safe pyraclostrobin-loaded multiwalled carbon nanotube delivery systems: higher fungicidal activity and lower acute toxicity, ACS Agric. Sci. Technol., 2022, vol. 2, no. 3, pp. 534–545 https://doi.org/10.1021/acsagscitech.1c00293
Weig, A., Deswarte, C., and Chrispeels, M.J., The major intrinsic protein family of Arabidopsis has 23 members that form three distinct groups with functional aquaporins in each group, Plant Physiol., 1997, vol. 114, no. 4, pp. 1347–1357. https://doi.org/10.1104/pp.114.4.1347
Zhao, L., Wang, W., Fu, X., Liu, A., Cao, J., and Liu, J., Graphene oxide, a novel nanomaterial as soil water retention agent, dramatically enhances drought stress tolerance in soybean plants, Front. Plant Sci., 2022, vol. 13, p. 810905. https://doi.org/10.3389/fpls.2022.810905
Zhao, W., Wu, Z., Amde, M., Zhu, G., Wei, Y., Zhou, P., Zhang, Q., Song, M., Tan, Z., Zhang, P., Rui, Y., and Lynch, I., Nanoenabled enhancement of plant tolerance to heat and drought stress on molecular response, J. Agric. Food Chem., 2023, vol. 71, no. 51, pp. 20405–20418. https://doi.org/10.1021/acs.jafc.3c04838
Zhou, S., Hu, W., Deng, X., Ma, Z., Chen, L., Huang, C., Wang, C., Wang, J., He, Y., Yang, G., and He, G., Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco, PloS One, 2012, vol. 7, no. 12, p. e52439. https://doi.org/10.1371/journal.pone.0052439
Zhou, Q. and Hu, X., Systemic stress and recovery patterns of rice roots in response to graphene oxide nanosheets, Environ. Sci. Technol., 2017, vol. 51, no. 4, pp. 2022–2030. https://doi.org/10.1021/acs.est.6b05591
Zhu, Y.X., Yang, L., Liu, N., Yang, J., Zhou, X.K., Xia, Y.C., He, Y., He, Y.Q., Gong, H.J., Ma, D.F., and Yin, J.L., Genome-wide identification, structure characterization, and expression pattern profiling of aquaporin gene family in cucumber, BMC Plant Biol., 2019, vol. 19, no. 1, p. 345. https://doi.org/10.1186/s12870-019-1953-1
Zulfiqar, F. and Ashraf, M., Nanoparticles potentially mediate salt stress tolerance in plants, Plant Physiol. Biochem., 2021, vol. 160, pp. 257–268. https://doi.org/10.1016/j.plaphy.2021.01.028