TSitologiya i Genetika 2024, vol. 58, no. 5, 68-80
Cytology and Genetics 2024, vol. 58, no. 5, 428–439, doi: https://www.doi.org/10.3103/S0095452724050104

The Role of aquaporins and carbon nanomaterials in abiotic stress in plants

Prylutska S.V., Tkachenko T.A., Tkachenko V.V., Yemets A.I.

  1. National University of Life and Environmental Sciences of Ukraine, Heroiv Oborony Str., 15, Kyiv, 03041, Ukraine
  2. Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Baidy-Vyshnevetskoho str., 2a, Kyiv, 04123, Ukraine

SUMMARY. The homeostasis and survival of a plant cell is determined by the stability of its internal environment due to the controlled movement of various molecules and ions into the cell and intercellular space and are provided the plasma membrane. Aquaporin membrane channel proteins are one of the important components of the plant cells. Plants are characterized by a large number and variety of these proteins, which have different localization, properties and specificity. The functions of aquaporins are not limited to the transport of water, ions, and individual small molecules, these membrane proteins also play an important role in the development of the reaction-response of plants to the action of biotic and abiotic stress factors. Unfavorable growth conditions cause a change in the activity of aquaporins at transcriptional, translational, and posttranscriptional levels. In the review was analyzed modern scientific date at the role of aquaporins in the implementation of the plant’s protective response to the action of various abiotic factors that change the osmotic balance and intracellular homeostasis. Also it was characterized the effect of carbon nanomaterials (graphene, single- and multi-walled nanotubes, fullerene) on the regulation of the functional activity of aquaporins of various subfamilies and the expression of relevant genes under the influence of abiotic stresses on plants.

Keywords: aquaporins, stress, plants, C60 fullerene, graphene, single- and multi-walled nanotubes

TSitologiya i Genetika
2024, vol. 58, no. 5, 68-80

Current Issue
Cytology and Genetics
2024, vol. 58, no. 5, 428–439,
doi: 10.3103/S0095452724050104

Full text and supplemented materials

Free full text: PDF  

References

Adeel, M., Farooq, T., White, J.C., Hao, Y., He, Z., and Rui, Y., Carbon-based nanomaterials suppress tobacco mosaic virus (TMV) infection and induce resistance in Nicotiana benthamiana, J. Hazard. Mater., 2021, vol. 404, p. 124167. https://doi.org/10.1016/j.jhazmat.2020.124167

Aguirre-Becerra, H., Feregrino-Perez, A.A., Esquivel, K., Perez-Garcia, C.E., Vazquez-Hernandez, M.C., and Mariana-Alvarado, A., Nanomaterials as an alternative to increase plant resistance to abiotic stresses, Front. Plant Sci., 2022, vol. 13, p. 1023636. https://doi.org/10.3389/fpls.2022.1023636

Alghuthaymi, M.A., C.R., P.R., Kalia, A., Bhardwaj, K., Bhardwaj, P., Abd-Elsalam, K.A., Valis, M., and Kuca, K., Nanohybrid antifungals for control of plant diseases: current status and future perspectives, J. Fungi, 2021, vol. 7, no. 1, p. 48. https://doi.org/10.3390/jof7010048

Arnspang, E.C., Sengupta, P., Mortensen, K.I., Jensen, H.H., Hahn, U., Jensen, E. B.V., Lippincott-Schwartz, J., and Nejsum, L.N., Regulation of plasma membrane nanodomains of the water channel aquaporin-3 revealed by fixed and live photoactivated localization microscopy, Nano Lett., 2019, vol. 19, no. 2, pp. 699–707. https://doi.org/10.1021/acs.nanolett.8b03721

Ayadi, M., Brini, F., and Masmoudi, K., Overexpression of a wheat aquaporin gene, TdPIP2;1, enhances salt and drought tolerance in transgenic durum wheat cv. Maali, Int. J. Mol. Sci., 2019, vol. 20, no. 10, p. 2389. https://doi.org/10.3390/ijms20102389

Beamer, Z.G., Routray, P., Choi, W.G., Spangler, M.K., Lokdarshi, A., and Roberts, D.M., Aquaporin family lactic acid channel NIP2;1 promotes plant survival under low oxygen stress in Arabidopsis, Plant Physiol., 2021, vol. 187, no. 4, pp. 2262–2278. https://doi.org/10.1093/plphys/kiab196

Bezerra-Neto, J.P., de Araujo, F.C., Ferreira-Neto, J.R.C., da Silva, M.D., Pandolfi, V., Aburjaile, F.F., Sakamoto, T., de Oliveira Silva, R.L., Kido, E.A., Barbosa Amorim, L.L., Ortega, J.M., and Benko-Iseppon, A.M., Plant aquaporins: diversity, evolution and biotechnological applications, Curr. Protein Peptide Sci., 2019, vol. 20, no. 4, pp. 368–395. https://doi.org/10.2174/1389203720666181102095910

Bienert, G.P. and Chaumont, F., Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide, Biochim. Biophys. Acta, 2014, vol. 1840, no. 5, pp. 1596–1604. https://doi.org/10.1016/j.bbagen.2013.09.017

Bordin, J.R., Ilha, A.V., Cortes, P.R.B., Oliveira, W.d.S., Pinheiro, L.A., de Moraes, E.E., Grison, T.G., and Kohler, M.H., Molecular modeling of aquaporins and artificial transmembrane channels: a mini-review and perspective for plants, Theor. Exp. Plant Physiol., 2023. https://doi.org/10.1007/s40626-023-00284-2

Borišev, M., Borišev, I., Župunski, M., Arsenov, D., Pajević, S., Ćurčić, Ž., Vasin, J., and Djordjevic, A., Drought impact is alleviated in sugar beets (Beta vulgaris L.) by foliar application of fullerenol nanoparticles, PloS One, 2016, vol. 11, no. 11, p. e0166248. https://doi.org/10.1371/journal.pone.0166248

Borovaya, M., Naumenko, A., Horiunova, I., Plokhovska, S., Blume, Y., and Yemets, A., “Green” synthesis of Ag2S nanoparticles, study of their properties and bioimaging applications, Appl. Nanosci., 2020, vol. 10, no. 12, pp. 4931–4940. https://doi.org/10.1007/s13204-020-01365-3

Boursiac, Y., Chen, S., Luu, D. T., Sorieul, M., van den Dries, N., and Maurel, C., Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression, Plant Physiol., 2005, vol. 139, no. 2, pp. 790–805. https://doi.org/10.1104/pp.105.065029

Burlaka, O.M., Pirko, Y.V., Yemets, A.I., and Blume Ya.B., Plant genetic transformation using carbon nanotubes for DNA delivery, Cytol. Genet., 2015, vol. 49, pp. 349–357. https://doi.org/10.3103/S009545271506002X

Chaumont, F., Moshelion, M., and Daniels, M.J., Regulation of plant aquaporin activity, Biol. Cell, 2005, vol. 97, no. 10, pp. 749–764. https://doi.org/10.1042/BC20040133

Chevalier, A.S. and Chaumont, F., Trafficking of plant plasma membrane aquaporins: multiple regulation levels and complex sorting signals, Plant Cell Physiol., 2015, vol. 56, no. 5, pp. 819–829. https://doi.org/10.1093/pcp/pcu203

Cui, X.H., Hao, F.S., Chen, H., Chen, J., and Wang, X.C., Expression of the Vicia faba VfPIP1 gene in Arabidopsis thaliana plants improves their drought resistance, J. Plant Res., 2008, vol. 121, no. 2, pp. 207–214. https://doi.org/10.1007/s10265-007-0130-z

Danielson, J.A. and Johanson, U., Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens, BMC Plant Biol., 2008, vol. 8, p. 45. https://doi.org/10.1186/1471-2229-8-45

Darabi, S. and Mohammadi, M.T., Fullerenol nanoparticles decrease ischaemia-induced brain injury and oedema through inhibition of oxidative damage and aquaporin-1 expression in ischaemic stroke, Brain Injury, 2017, vol. 31, no. 8, pp. 1142–1150. https://doi.org/10.1080/02699052.2017.1300835

Finiuk N., Buziashvili, A., Burlaka, O., Zaichenko A., Mitina, N., Miagkota, O., Lobachevska, O., Stoika, R., Blume, Ya., and Yemets, A., Investigation of novel oligoelectrolyte polymer carriers for their capacity of DNA delivery into plant cells, Plant Cell, Tissue Organ Cult., 2017, vol. 131, no. 1, pp. 27–39. https://doi.org/10.1007/s11240-017-1259-7

Gattolin, S., Sorieul, M., and Frigerio, L., Mapping of tonoplast intrinsic proteins in maturing and germinating Arabidopsis seeds reveals dual localization of embryonic TIPs to the tonoplast and plasma membrane, Mol. Plant, 2011, vol. 4, no. 1, pp. 180–189. https://doi.org/10.1093/mp/ssq051

Groszmann, M., Osborn, H.L., and Evans, J.R., Carbon dioxide and water transport through plant aquaporins, Plant Cell Environ., 2017, vol. 40, no. 6, pp. 938–961. https://doi.org/10.1111/pce.12844

Güvensoy-Morkoyun, A., Velioğlu, S., Ahunbay, M.G., and Tantekin-Ersolmaz, Ş.B., Desalination potential of aquaporin-inspired functionalization of carbon nanotubes: bridging between simulation and experiment, ACS Appl. Mater. Interfaces, 2022, vol. 14, no. 24, pp. 28174–28185. https://doi.org/10.1021/acsami.2c03700

Haghighi, M. and Teixeira da Silva, J.A., The effect of carbon nanotubes on the seed germination and seedling growth of four vegetable species, J. Crop Sci. Biotechnol., 2014, vol. 17, pp. 201–208. https://doi.org/10.1007/s12892-014-0057-6

Hatami, M., Hadian, J., and Ghorbanpour, M., Mechanisms underlying toxicity and stimulatory role of single-walled carbon nanotubes in Hyoscyamus niger during drought stress simulated by polyethylene glycol, J. Hazard. Mater., 2017, vol. 324, pp. 306–320. https://doi.org/10.1016/j.jhazmat.2016.10.064

Ishikawa, F., Suga, S., Uemura, T., Sato, M.H., and Maeshima, M., Novel type aquaporin SIPs are mainly localized to the ER membrane and show cell-specific expression in Arabidopsis thaliana, FEBS Lett., 2005, vol. 579, no. 25, pp. 5814–5820. https://doi.org/10.1016/j.febslet.2005.09.076

Kaldenhoff, R. and Fischer, M., Aquaporins in plants, Acta Physiol., 2006, vol. 187, nos. 1–2, pp. 169–176. https://doi.org/10.1111/j.1748-1716.2006.01563.x

Kaldenhoff, R. and Fischer, M., Functional aquaporin diversity in plants, Biochim. Biophys. Acta, 2006, vol. 1758, no. 8, pp. 1134–1141. https://doi.org/10.1016/j.bbamem.2006.03.012

Kapilan, R., Vaziri, M. and Zwiazek, J.J., Regulation of aquaporins in plants under stress, Biol. Res., 2018, vol. 51, p. 4. https://doi.org/10.1186/s40659-018-0152-0

Khan, M.N., Mobin, M., Abbas, Z.K., AlMutairi, K.A., and Siddiqui, Z.H., Role of nanomaterials in plants under challenging environments, Plant Physiol. Biochem., 2017, vol. 110, pp. 194–209. https://doi.org/10.1016/j.plaphy.2016.05.038

Khodakovskaya, M.V., de Silva, K., Biris, A.S., Dervishi, E., and Villagarcia, H., Carbon nanotubes induce growth enhancement of tobacco cells, ACS Nano, 2012, vol. 6, no. 3, pp. 2128–2135. https://doi.org/10.1021/nn204643g

Kolupaev, Yu.E., Karpets, Yu.V., Shkliarevskyi M.A., Yastreb T.O., Plohovska S.H., Yemets A.I., and Blume, Ya.B., Gasotransmitters in plants: mechanisms of participation in adaptive responses, Open Agric. J., 2022, vol. 16, p. e187433152207050. https://doi.org/10.2174/18743315-v16-e2207050

Kolupaev, Yu.E., Yemets, A.I., Yastreb, T.O., and Blume, Y.B., The role of nitric oxide and hydrogen sulfide in regulation of redox homeostasis at extreme temperatures in plants, Front. Plant Sci., 2023, vol. 14, p. 1128439. https://doi.org/10.3389/fpls.2023.1128439

Kong, H., Meng, X., Akram, N.A., Zhu, F., Hu, J., and Zhang, Z., Seed priming with fullerol improves seed germination, seedling growth and antioxidant enzyme system of two winter wheat cultivars under drought stress, Plants, 2023, vol. 12, no. 6, p. 1417. https://doi.org/10.3390/plants12061417

Kou, E., Yao, Y., Yang, X., Song, S., Li, W., Kang, Y., Qu, S., Dong, R., Pan, X., Dongna, Li, Zhang, H., and Lei, B., Regulation mechanisms of carbon dots in the development of lettuce and tomato, ACS Sustainable Chem. Eng., 2021, vol. 9, no. 2, pp. 944–953. https://doi.org/10.1021/acssuschemeng.0c08308

Kovač, T., Marček, T., Šarkanj, B., Borišev, I., Ižaković, M., Jukić, K., Lončarić, A., Krska, T., Sulyok, M., and Krska, R., Fullerol C60(OH)24 Nanoparticles and drought impact on wheat (Triticum aestivum L.) during growth and infection with Aspergillus flavus, J. Fungi, 2021, vol. 7, no. 3, p. 236. https://doi.org/10.3390/jof7030236

Kurowska, M., TIP Aquaporins in Plants: Role in Abiotic Stress Tolerance, IntechOpen, 2021. https://doi.org/10.5772/intechopen.94165

Kurowska, M.M., Aquaporins in cereals-important players in maintaining cell homeostasis under abiotic stress, Genes, 2021, vol. 12, no. 4, p. 477. https://doi.org/10.3390/genes12040477

Kurowska, M.M., Wiecha, K., Gajek, K., and Szarejko, I., Drought stress and re-watering affect the abundance of TIP aquaporin transcripts in barley, PloS One, 2019, vol. 14, no. 12, p. e0226423. https://doi.org/10.1371/journal.pone.0226423

Lahiani, M.H., Dervishi, E., Chen, J., Nima, Z., Gaume, A., Biris, A.S., and Khodakovskaya, M.V., Impact of carbon nanotube exposure to seeds of valuable crops, ACS Appl. Mater. Interfaces, 2013. vol. 5, no. 16, pp. 7965–7973. https://doi.org/10.1021/am402052x

Laloux, T., Junqueira, B., Maistriaux, L.C., Ahmed, J., Jurkiewicz, A., and Chaumont, F., Plant and mammal aquaporins: same but different, Int. J. Mol. Sci., 2018, vol. 19, no. 2, p. 521. https://doi.org/10.3390/ijms19020521

Li, J., Ban, L., Wen, H., Wang, Z., Dzyubenko, N., Chapurin, V., Gao, H., and Wang, X., An aquaporin protein is associated with drought stress tolerance, Biochem. Biophys. Res. Commun., 2015, vol. 459, no. 2, pp. 208–213. https://doi.org/10.1016/j.bbrc.2015.02.052

Li, T., Sun, W., Wang, X., Feng, J., and Ma, D., Cell-like behaviors of dynamic graphene bubbles with fast water transport, ACS Omega, 2020, vol. 5, no. 43, pp. 28249–28254. https://doi.org/10.1021/acsomega.0c04150

Li, Y., Li, Z., Aydin, F., Quan, J., Chen, X., Yao, Y. C., Zhan, C., Chen, Y., Pham, T. A., and Noy, A., Water-ion permselectivity of narrow-diameter carbon nanotubes, Sci. Adv., 2020, vol. 6, no. 38, p. eaba9966. https://doi.org/10.1126/sciadv.aba9966

Li, Y., Liu, M., Yang, X., Zhang, Y., Hui, H., Zhang, D., and Shu, J., Multi-walled carbon nanotubes enhanced the antioxidative system and alleviated salt stress in grape seedlings, Sci. Hortic., 2022, vol. 293, p. 110698. https://doi.org/10.1016/j.scienta.2021.110698

Liu, J., Li, R., and Yang, B., Carbon dots: a new type of carbon-based nanomaterial with wide applications, ACS Central Sci., 2020, vol. 6, pp. 2179–2195. https://doi.org/10.1021/acscentsci.0c01306

Lv, X., Sha, H., Ye, Z., Wang, Y., and Mao, B., Nanomaterials in plant management: functions, mechanisms and prospects, Environ. Sci. Nano, 2023, vol. 10, pp. 3232–3252. https://doi.org/10.1039/D3EN00014A

Maeshima, M., Ishikawa, F., ER membrane aquaporins in plants, Pflugers Archiv, 2008, vol. 456, no. 4, pp. 709–716. https://doi.org/10.1007/s00424-007-0363-7

Martinez-Ballesta, M.C. and Carvajal, M., New challenges in plant aquaporin biotechnology, Plant Sci., 2014, vol. 217–218, pp. 71–77. https://doi.org/10.1016/j.plantsci.2013.12.006

Martínez-Ballesta, M.C., Zapata, L., Chalbi, N., and Carvajal, M., Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity, J. Nanobiotechnol., 2016, vol. 14, no. 1, p. 42. https://doi.org/10.1186/s12951-016-0199-4

Martínez-Ballesta, M.C., Chelbi, N., Lopez-Zaplana, A., and Carvajal, M., Discerning the mechanism of the multiwalled carbon nanotubes effect on root cell water and nutrient transport, Plant Physiol. Biochem., 2020, vol. 146, pp. 23–30. https://doi.org/10.1016/j.plaphy.2019.11.008

Maurel C., Plant aquaporins: Novel functions and regulation properties, FEBS Lett., 2007, vol. 581, no. 12, pp. 2227–2236. https://doi.org/10.1016/j.febslet.2007.03.021

Maurel, C., Boursiac, Y., Luu, D. T., Santoni, V., Shahzad, Z., and Verdoucq, L., Aquaporins in plants, Physiol. Rev., 2015, vol. 95, no. 4, pp. 1321–1358. https://doi.org/10.1152/physrev.00008.2015

Mukarram, M., Khan, M.M.A., Kurjak, D., Lux, A., and Corpas, F.J., Silicon nanoparticles (SiNPs) restore photosynthesis and essential oil content by upgrading enzymatic antioxidant metabolism in lemongrass (Cymbopogon flexuosus) under salt stress, Front. Plant Sci., 2023, vol. 14, p. 1116769. https://doi.org/10.3389/fpls.2023.1116769

Ozfidan-Konakci, C., Alp, F.N., Arikan, B., Balci, M., Parmaksizoglu, Z., Yildiztugay, E., and Cavusoglu, H., The effects of fullerene on photosynthetic apparatus, chloroplast-encoded gene expression, and nitrogen assimilation in Zea mays under cobalt stress, Physiol. Plant., 2022, vol. 174, no. 3, p. e13720. https://doi.org/10.1111/ppl.13720

Ozfidan-Konakci, C., Alp, F.N., Arikan, B., Elbasan, F., Cavusoglu, H., and Yildiztugay, E., The biphasic responses of nanomaterial fullerene on stomatal movement, water status, chlorophyll a fluorescence transient, radical scavenging system and aquaporin-related gene expression in Zea mays under cobalt stress, Sci. Total Environ., 2022, vol. 826, p. 154213. https://doi.org/10.1016/j.scitotenv.2022.154213

Pandey, A.K., Sun, T., Wu, X., Wang, Z., Jiang, R., Zhang, P., Fang P., and Xu P., Aquaporin genes in garden pea and their regulation by the nano-antioxidant fullerol in imbibing embryos under osmotic stress, Veg. Res., 2023, vol. 3, p. 10. https://doi.org/10.48130/VR-2023-0010

Plohovska S.H., Krasylenko Y.A., and Yemets A.I., Nitric oxide modulates actin filament organization in Arabidopsis thaliana primary root cells at low temperatures, Cell Biol. Int., 2019, vol. 43, no. 9, pp. 1020–1030. https://doi.org/10.1002/cbin.10931

Pommerrenig, B., Diehn, T.A., and Bienert, G.P., Metalloido-porins: Essentiality of Nodulin 26-like intrinsic proteins in metalloid transport, Plant Sci., 2015, vol. 238, pp. 212–227. https://doi.org/10.1016/j.plantsci.2015.06.002

Ponnu, J., Surviving hypoxia: aquaporin-like protein NIP2;1 mediates lactic acid transport, Plant Physiol., 2021, vol. 186, no. 4, pp. 1767–1769. https://doi.org/10.1093/plphys/kiab254

Prylutska, S.V., Franskevych, D.V., and Yemets, A.I., Cellular biological and molecular genetic effects of carbon nanomaterials in plants, Cytol. Genet., 2022, vol. 56, no. 4, pp. 351–360. https://doi.org/10.3103/S0095452722040077

Prylutska, S.V., Tkachenko, T.A., and Tkachenko, V.V., Application of carbon nanomaterials for the regulation of stress resistance in agricultural plants, Nanosist., Nanomater., Nanotehnol., 2023, vol. 21, no. 4, pp. 923–944.

Rao, D.P. and Srivastava, A., Enhancement of seed germination and plant growth of wheat, maize, peanut and garlic using multiwalled carbon nanotubes, Eur. Chem. Bull., 2014, vol. 3, no. 5, pp. 502–504. https://doi.org/10.17628/ECB.2014.3.502

Rezaei Cherati, S., Shanmugam, S., Pandey, K., and Khodakovskaya, M.V., Whole-transcriptome responses to environmental stresses in agricultural crops treated with carbon-based nanomaterials, ACS Appl. Biol. Mater., 2021, vol. 4, no. 5, pp. 4292–4301. https://doi.org/10.1021/acsabm.1c00108

Rodrigues, M.I., Takeda, A.A., Bravo, J.P., and Maia, I.G., The eucalyptus Tonoplast Intrinsic Protein (TIP) gene subfamily: genomic organization, structural features, and expression profiles, Front. Plant Sci., 2016, vol. 7, p. 1810. https://doi.org/10.3389/fpls.2016.01810

Rohatgi, V., Challagulla, N.V., and Pudake, R.N., Current status and future prospects of nanoparticles as plant genetic materials carrier, in Nano-Enabled Agrochemicals in Agriculture, Ghorbanpour, M. and Shahid, M.A., Eds., Academic, 2022, Chapter 23, pp. 407–424. https://doi.org/10.1016/b978-0-323-91009-5.00028-8

Scochera, F., Zerbetto De Palma, G., Canessa Fortuna, A., Chevriau, J., Toriano, R., Soto, G., Zeida, A., and Alleva, K., PIP aquaporin pH-sensing is regulated by the length and charge of the C-terminal region, FEBS J., 2022, vol. 289, no. 1, pp. 246–261. https://doi.org/10.1111/febs.16134

Shelar, A., Nile, S.H., Singh, A.V., Rothenstein, D., Bill, J., Xiao, J., Chaskar, M., Kai, G., and Patil, R., Recent advances in nano-enabled seed treatment strategies for sustainable agriculture: challenges, risk assessment, and future perspectives, Nano-Micro Lett., 2023, vol. 15, no. 1, p. 54. https://doi.org/10.1007/s40820-023-01025-5

Shivaraj, S.M., Deshmukh, R.K., Rai, R., Belanger, R., Agrawal, P.K., and Dash, P.K., Genome-wide identification, characterization, and expression profile of aquaporin gene family in flax (Linum usitatissimum), Sci. Rep., 2017, vol. 7, p. 46137. https://doi.org/10.1038/srep46137

Shivaraj, S.M., Deshmukh, R., Sonah, H., and Belanger, R.R., Identification and characterization of aquaporin genes in Arachis duranensis and Arachis ipaensis genomes, the diploid progenitors of peanut, BMC Genomics, 2019, vol. 20, no. 1, p. 222. https://doi.org/10.1186/s12864-019-5606-4

Shivaraj, S.M., Sharma, Y., Chaudhary, J., Rajora, N., Sharma, S., Thakral, V., Ram, H., Sonah, H., Singla-Pareek, S.L., Sharma, T.R., and Deshmukh, R., Dynamic role of aquaporin transport system under drought stress in plants, Environ. Exp. Bot., 2021, vol. 184, p. 104367. https://doi.org/10.1016/J.ENVEXPBOT.2020.104367

Sonah, H., Deshmukh, R.K., Labbe, C., and Belanger, R.R., Analysis of aquaporins in Brassicaceae species reveals high-level of conservation and dynamic role against biotic and abiotic stress in canola, Sci. Rep., 2017, vol. 7, no. 1, p. 2771. https://doi.org/10.1038/s41598-017-02877-9

Song, L., Nguyen, N., Deshmukh, R.K., Patil, G.B., Prince, S.J., Valliyodan, B., Mutava, R., Pike, S.M., Gassmann, W., and Nguyen, H.T., Soybean TIP gene family analysis and characterization of GmTIP1;5 and GmTIP2;5 water transport activity, Front. Plant. Sci., 2016, vol. 7, p. 1564. https://doi.org/10.3389/fpls.2016.01564

Spadola, G., Sanna, V., Bartoli, J., Carcelli, M., Pelosi, G., Bisceglie, F., Restivo, F. M., Degola, F., and Rogolino, D., Thiosemicarbazone nano-formulation for the control of Aspergillus flavus, Environ. Sci. Pollut. Res. Int., 2020, vol. 27, no. 16, pp. 20125–20135. https://doi.org/10.1007/s11356-020-08532-7

Subotić, A., Jevremović, S., Milošević, S., Trifunović-Momčilov, M., Đurić, M., and Koruga, Đ., Physiological response, oxidative stress assessment and aquaporin genes expression of cherry tomato (Solanum lycopersicum L.) exposed to hyper-harmonized fullerene water complex, Plants, 2022, vol. 11, no. 21, p. 2810. https://doi.org/10.3390/plants11212810

Sun, X., Chen, J., Fan, W., Liu, S., and Kamruzzaman, M., Production of reactive oxygen species via nanobubble water improves radish seed water absorption and the expression of aquaporin genes, Langmuir, 2022, vol. 38, no. 38, pp. 11724–11731. https://doi.org/10.1021/acs.langmuir.2c01860

Tanasienko, I.V., Yemets, A.I, Finiuk, N.S., Stoika, R., and Blume, Y.B., DMAEM-based cationic polymers as novel carriers for DNA delivery into cells, Cell Biol. Int., 2015, vol. 39, no. 3, pp. 243–245. https://doi.org/10.1002/cbin.10381

Wang, L., Zhang, C., Wang, Y., Wang, Y., Yang, C., Lu, M., and Wang C., Tamarix hispida aquaporin ThPIP2;5 confers salt and osmotic stress tolerance to transgenic Tamarix and Arabidopsis, Environ. Exp. Bot., 2018, vol. 152, pp. 158−66. https://doi.org/10.1016/j.envexpbot.2017.05.018

Wang, Y., Zhao, Z., Liu, F., Sun, L., and Hao, F., Versatile roles of aquaporins in plant growth and development, Int. J. Mol. Sci., 2020, vol. 21, no. 24, p. 9485. https://doi.org/10.3390/ijms21249485

Wang, Y., Tian, J., Wang, Z., Li, C., and Li, X., Crop-safe pyraclostrobin-loaded multiwalled carbon nanotube delivery systems: higher fungicidal activity and lower acute toxicity, ACS Agric. Sci. Technol., 2022, vol. 2, no. 3, pp. 534–545 https://doi.org/10.1021/acsagscitech.1c00293

Weig, A., Deswarte, C., and Chrispeels, M.J., The major intrinsic protein family of Arabidopsis has 23 members that form three distinct groups with functional aquaporins in each group, Plant Physiol., 1997, vol. 114, no. 4, pp. 1347–1357. https://doi.org/10.1104/pp.114.4.1347

Zhao, L., Wang, W., Fu, X., Liu, A., Cao, J., and Liu, J., Graphene oxide, a novel nanomaterial as soil water retention agent, dramatically enhances drought stress tolerance in soybean plants, Front. Plant Sci., 2022, vol. 13, p. 810905. https://doi.org/10.3389/fpls.2022.810905

Zhao, W., Wu, Z., Amde, M., Zhu, G., Wei, Y., Zhou, P., Zhang, Q., Song, M., Tan, Z., Zhang, P., Rui, Y., and Lynch, I., Nanoenabled enhancement of plant tolerance to heat and drought stress on molecular response, J. Agric. Food Chem., 2023, vol. 71, no. 51, pp. 20405–20418. https://doi.org/10.1021/acs.jafc.3c04838

Zhou, S., Hu, W., Deng, X., Ma, Z., Chen, L., Huang, C., Wang, C., Wang, J., He, Y., Yang, G., and He, G., Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco, PloS One, 2012, vol. 7, no. 12, p. e52439. https://doi.org/10.1371/journal.pone.0052439

Zhou, Q. and Hu, X., Systemic stress and recovery patterns of rice roots in response to graphene oxide nanosheets, Environ. Sci. Technol., 2017, vol. 51, no. 4, pp. 2022–2030. https://doi.org/10.1021/acs.est.6b05591

Zhu, Y.X., Yang, L., Liu, N., Yang, J., Zhou, X.K., Xia, Y.C., He, Y., He, Y.Q., Gong, H.J., Ma, D.F., and Yin, J.L., Genome-wide identification, structure characterization, and expression pattern profiling of aquaporin gene family in cucumber, BMC Plant Biol., 2019, vol. 19, no. 1, p. 345. https://doi.org/10.1186/s12870-019-1953-1

Zulfiqar, F. and Ashraf, M., Nanoparticles potentially mediate salt stress tolerance in plants, Plant Physiol. Biochem., 2021, vol. 160, pp. 257–268. https://doi.org/10.1016/j.plaphy.2021.01.028