TSitologiya i Genetika 2024, vol. 58, no. 2, 63-65
Cytology and Genetics 2024, vol. 58, no. 2, 142–151, doi: https://www.doi.org/10.3103/S0095452724020105

Genome­wide analysis of SBP­box gene family in Pigeonpea (Cajanus cajan L.)

Singh Sh., Praveen A., Khanna S.M.

  1. Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, 203201, U.P., India
  2. Department of Biotechnology, Mangalmay Institute of Management and Technology, Greater Noida, U.P., India

Worldwide, Pigeonpea (Cajanus cajan L.) is a protein source. SBP-box transcription factors are crucial for plant development and regulation of stress resistance. The SBP genes in Pigeonpea were examined utilizing genomic information. Using databases, PlantTFDB and NCBI, SBP-box family genes of Pigeonpea were identified and then characterized in silico using bioinformatics tools. In this study, 5 major chromosomes out of 11 and an unplaced scaffold of the Pigeonpea were found to have 24 SBP genes. Significant differences in CcaSBPs protein length, molecular weight, GRAVY value (grand average of hydropathicity), and theoretical isoelectric point were observed. It was shown by Gene Structure Display Server (GSDS) that all CcaSBP genes contain one or more introns. CcaSBP proteins and SBP proteins from other species (A. thaliana and O. sativa) were analyzed phylogenetically and grouped into seven major groups (I, II, III, IV, V, VI, VII). Through this, an effort has been made to present unique information on CcaSBP genes to study Pigeonpea growth and stress mechanisms.

Keywords: Cajanus cajan, Development, Gene structure, Phylogenetic analysis, SBP-box gene family

TSitologiya i Genetika
2024, vol. 58, no. 2, 63-65

Current Issue
Cytology and Genetics
2024, vol. 58, no. 2, 142–151,
doi: 10.3103/S0095452724020105

Full text and supplemented materials

References

Abdullah, M., Cao, Y., Cheng, X., Shakoor, A., Su, X., Gao, J., and Cai, Y., Genome-wide analysis characterization and evolution of SBP genes in Fragaria vesca, Pyrus bretschneideri, Prunus persica and Prunus mume, Front. Genet., 2018, vol. 9, p. 64. https://doi.org/10.3389/fgene.2018.00064

Ali, M.A., Alia, B., Atif, R.M., Rasul, I., Nadeem, U., Shahid, A., and Azeem, F., Genome-wide identification and comparative analysis of squamosa-promoter binding proteins (SBP) transcription factor family in Gossypium raimondii and Arabidopsis thaliana, Pak. J. Bot., 2017, vol. 49, pp. 1113–1126.

Ayenan, M.A.T., Ofori, K., Ahoton, L.E., and Danquah, A., Pigeonpea [(Cajanus cajan (L.) Millsp.)] production system, farmers’ preferred traits and implications for variety development and introduction in Benin, Agric. Food Secur., BMC, 2017, vol. 6, p. 48. https://doi.org/10.1186/s40066-017-0129-1

Bailey, T.L., Johnson, J., Grant, C.E., and Noble, W.S., The MEME Suite, Nucleic Acids Res., 2015, vol. 43, pp. W39–W49. https://doi.org/10.1093/nar/gkv416

Birkenbihl, R.P., Jach, G., Saedler, H., and Huijser, P., Functional dissection of the plant-specific SBP-domain: overlap of the DNA-binding and nuclear localization domains, J. Mol. Biol., 2005, vol. 352, pp. 585–596, https://doi.org/10.1016/j.jmb.2005.07.013

Blum, M., Chang, H.Y., Chuguransky, S., Grego, T., Kandasaamy, S., Mitchell, A., Nuka, G., et al., The InterPro protein families and domains database: 20 years on, Nucleic Acids Res., 2021, vol. 49, pp. D344–D354. https://doi.org/10.1093/nar/gkaa977

Choi, Y.M., Hyun, D.Y., Lee, S., Yoon, H., Lee, M.C., and Oh, S., et al., Agricultural characters, phenolic and nutritional contents, and antioxidant activities of pigeon pea (Cajanus cajan) germplasms cultivated in the Republic of Korea, Korean J. Plant Res., 2020, vol. 33, pp. 50–61. https://doi.org/10.7732/kjpr.2020.33.1.50

Chou K.C. and Shen H.B., Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization, PLoS One, 2010, vol. 5, p. e11335. https://doi.org/10.1371/journal.pone.0011335

Chuck, G., Whipple, C., Jackson, D., and Hake, S., The maize SBP-box transcription factor encoded by tasselsheath4 regulates bract development and the establishment of meristem boundaries, Development, 2010, vol. 137, pp. 1243–1250. https://doi.org/10.1242/dev.048348

Das, A., Saxena, S., Kumar, K., Tribhuvan, K.U., Singh, N.K., and Gaikwad, K., Non-coding RNAs having strong positive interaction with mRNAs reveal their regulatory nature during flowering in a wild relative of pigeonpea (Cajanus scarabaeoides), Mol. Biol. Rep., 2020, vol. 47, pp. 3305–3317. https://doi.org/10.1007/s11033-020-05400-y

Drews, O., Reil, G., Parlar, H., and Görg, A., Setting up standards and a reference map for the alkaline proteome of the Gram-positive bacterium Lactococcus lactis, Proteomics, 2004, vol. 4, pp. 1293–1304. https://doi.org/10.1002/pmic.200300720

Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D., and Bairoch, A., Protein identification and analysis tools on the ExPASy Server, in The Proteomics Protocols Handbook, Humana Press, 2005, pp. 571–607. https://doi.org/10.1385/1-59259-890-0:571

Han, Y.Y., Ma, Y.Q., Li, D.Z., Yao, J.W., and Xu, Z.Q., Characterization and phylogenetic analysis of fifteen NtabSPL genes in Nicotiana tabacum L. cv. Qinyan95, Dev. Genes Evol., 2016, vol. 226, pp. 1–14. https://doi.org/10.1007/s00427-015-0522-3

Horton, P., Park, K.J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C.J., and Nakai, K., WoLF PSORT: protein localization predictor, Nucleic Acids Res., 2007, vol. 35, pp. W585–W587. https://doi.org/10.1093/nar/gkm259

Hu, B., Jin, J., Guo, A.Y., Zhang, H., Luo, J., and Gao, G., GSDS 2.0: an upgraded gene feature visualization server, Bioinformatics, 2015, vol. 31, pp. 1296–1297. https://doi.org/10.1093/bioinformatics/btu817

Jin, J., Tian, F., Yang, D.C., Meng, Y.Q., Kong, L., Luo, J., and Gao, G., PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants, Nucleic Acids Res., 2017, vol. 45, pp. D1040–D1045. https://doi.org/10.1093/nar/gkw982

Kropat, J., Tottey, S., Birkenbihl, R.P., Depège, N., Huijser, P., and Merchant, S., A regulator of nutritional copper signaling in Chlamydomonas is an SBP domain protein that recognizes the GTAC core of copper response element, Proc. Natl. Acad. Sci., 2005, vol. 102, pp. 18730–18735. https://doi.org/10.1073/pnas.0507693102

Letunic, I., Khedkar, S., and Bork, P., SMART: recent updates, new developments and status in 2020, Nucleic Acids Res., 2021, vol. 49, pp. D458–D460. https://doi.org/10.1093/nar/gkaa937

Li, C. and Lu, S., Molecular characterization of the SPL gene family in Populus trichocarpa, BMC Plant Biol., 2014, vol. 14, p. 131. https://doi.org/10.1186/1471-2229-14-131

Li, J., Hou, H., Li, X., Xiang, J., Yin, X., Gao, H., and Zheng, Y., et al., Genome-wide identification and analysis of the SBP-box family genes in apple (Malus × domestica Borkh.), Plant Physiol. Biochem., 2013, vol. 70, pp. 100–114. https://doi.org/10.1016/j.plaphy.2013.05.021

Liang, X., Nazarenus, T.J., and Stone, J.M., Identification of a consensus DNA-binding site for the Arabidopsis thaliana SBP domain transcription factor, AtSPL14, and binding kinetics by surface plasmon resonance, Biochemistry, 2008, vol. 47, pp. 3645–3653. https://doi.org/10.1021/bi701431y

Ma, J., Yang, Y., Luo, W., Yang, C., Ding, P., Liu, Y., Qiao, L., Chang, Z., Geng, H., Wang, P., et al., Genome-wide identification and analysis of the MADS-box gene family in bread wheat (Triticum aestivum L.), PLoS One, 2017, vol. 12, p. e0181443. https://doi.org/10.1371/journal.pone.0181443

Mao, H.D., Yu, L.J., Li, Z.J., Yan, Y., Han, R., Liu, H., and Ma, M., Genome-wide analysis of the SPL family transcription factors and their responses to abiotic stresses in maize, Plant Gene, 2016, vol. 6, pp. 1–12. https://doi.org/10.1016/j.plgene.2016.03.003

Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G.A., Sonnhammer, E.L.L., Tosatto, S.C.E., et al., Pfam: The protein families database in 2021, Nucleic Acids Res., 2021, vol. 49, pp. D412–D419. https://doi.org/10.1093/nar/gkaa913

Nix, A., Paull, C.A., and Colgrave, M., The flavonoid profile of pigeonpea, Cajanus cajan: a review, SpringerPlus, 2015, vol. 4, p. 125. https://doi.org/10.1186/s40064-015-0906-x

Oliver, T., Schmidt, B., Nathan, D., Clemens, R., and Maskell, D., Using reconfigurable hardware to accelerate multiple sequence alignment with ClustalW, Bioinformatics, 2005, vol. 21, pp. 3431–3432. https://doi.org/10.1093/bioinformatics/bti508

Pan, F., Wang, Y., Liu H., Wu M., Chu W., Chen D., and Xiang Y., Genome-wide identification and expression analysis of SBP-like transcription factor genes in Moso Bamboo (Phyllostachys edulis), BMC Genomics., 2017, vol. 18, p. 486. https://doi.org/10.1186/s12864-017-3882-4

Potte, S.C., Luciani, A., Eddy, S.R., Park, Y., Lopez, R., and Finn, R.D., HMMER web server: 2018 update, Nucleic Acids Res., 2018, vol. 46, pp. W200–W204. https://doi.org/10.1093/nar/gky448

Preston, J.C. and Hileman, L.C., Functional evolution in the plant SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) gene family, Front. Plant Sci., 2013, vol. 4, p. 80. https://doi.org/10.3389/fpls.2013.00080

Rathinam, M., Mishra, P., Vasudevan, M., Budhwar, R., Mahato, A., Lakshmi Prabha, A., Singh, N.K., et al., Comparative transcriptome analysis of pigeonpea, Cajanus cajan (L.) and one of its wild relatives Cajanus platycarpus (Benth.) Maesen, PLoS One, 2019, vol. 14, p. e0218731. https://doi.org/10.1371/journal.pone.0218731

Riese, M., Höhmann, S., Saedler, H., Thomas, M., and Huijser, P., Comparative analysis of the SBP-box gene families in P. patens and seed plants, Gene, 2007, vol. 401, pp. 28–37. https://doi.org/10.1016/j.gene.2007.06.018

Salinas, M., Xing, S., Höhmann, S., Berndtgen, R., and Huijser, P., Genomic organization, phylogenetic comparison and differential expression of the SBP-box family of transcription factors in tomato, Planta, 2012, vol. 235, pp. 1171–1184. https://doi.org/10.1007/s00425-011-1565-y

Saxena, K.B., Seed Production Systems in Pigeonpea ICRISAT, International Crops Research Institute for the Semi-Arid Tropics, 2006.

Saxena, K.B., Genetic improvement of pigeon pea—A review, Trop. Plant Biol., 2008, vol. 1, pp. 159–178. https://doi.org/10.1007/s12042-008-9014-1

Shalom, L., Shlizerman, L., Zur, N., Doron-Faigenboim, A., Blumwald, E., and Sadka, A., Molecular characterization of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) gene family from Citrus and the effect of fruit load on their expression, Front. Plant Sci., 2015, vol. 6, p. 389. https://doi.org/10.3389/fpls.2015.00389

Song, N., Cheng, Y., Peng, W., Peng, E., Zhao, Z., Liu, T., and Yi, T., et al., Genome-wide characterization and expression analysis of the SBP-box gene family in sweet orange (Citrus sinensis), Int. J. Mol. Sci., 2021, vol. 22, p. 8918. https://doi.org/10.3390/ijms22168918

Tamura, K., Stecher, G., and Kumar, S., MEGA11: Molecular Evolutionary Genetics Analysis Version 11, Mol. Biol. Evol., 2021, vol. 38, pp. 3022–3027. https://doi.org/10.1093/molbev/msab120

Tan, H.W., Song, X.M., Duan, W.K., Wang, Y., Hou, X.L., and Cheng, Z.M., Genome-wide analysis of the SBP-box gene family in Chinese cabbage (Brassica rapa subsp. pekinensis), Genome, 2015, vol. 58, pp. 463–477. https://doi.org/10.1139/gen-2015-0074

Tripathi, R.K., Goel, R., Kumari, S., and Dahuja, A., Genomic organization, phylogenetic comparison, and expression profiles of the SPL family genes and their regulation in soybean, Dev. Genes Evol., 2017, vol. 227, pp. 101–119. https://doi.org/10.1007/s00427-017-0574-7

Wong, D.C.J., Gutierrez, R.L., Gambetta, G.A., and Castellarin, S.D., Genome-wide analysis of cis-regulatory element structure and discovery of motif-driven gene co-expression networks in grapevine, DNA Res., 2017, vol. 24, pp. 311–326. https://doi.org/10.1093/dnares/dsw061

Xu, M., Hu, T., Zhao, J., Park, M.Y., Earley, K.W., Wu, G., and Yang, L., et al., Developmental functions of miR156-regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes in Arabidopsis thaliana, PLoS Genet., 2016, vol. 12, p. e1006263. https://doi.org/10.1371/journal.pgen.1006263

Yamasaki, K., Kigawa, T., Inoue, M., Tateno, M., Yamasaki, T., Yabuki, T., and Aoki, M., et al., A novel zinc-binding motif revealed by solution structures of DNA-binding domains of Arabidopsis SBP-family transcription factors, J. Mol. Biol., 2004, vol. 337, pp. 49–63. https://doi.org/10.1016/j.jmb.2004.01.015

Yang, Z., Wang, X., Gu, S., Hu, Z., Xu, H., and Xu, C., Comparative study of SBP-box gene family in Arabidopsis and rice, Gene, 2008, vol. 407, pp. 1–11. https://doi.org/10.1016/j.gene.2007.02.034

Zhang, S.D. and Ling, L.Z., Genome-wide identification and evolutionary analysis of the SBP-box gene family in castor bean, PloS One, 2014, vol. 9, p. e86688. https://doi.org/10.1371/journal.pone.0086688

Zhang, D.Y., Zu, Y.G., Fu, Y.J., Wang, W., Zhang, L., Luo, M., and Mu, F.S., et al., Aqueous two-phase extraction and enrichment of two main flavonoids from pigeon pea roots and the antioxidant activity, Sep. Purif. Technol., 2013, vol. 102, pp. 26–33. https://doi.org/10.1016/j.seppur.2012.09.019

Zhou, Q., Zhang, S., Chen, F., Liu, B., Wu, L., Li, F., and Zhang, J., et al., Genome-wide identification and characterization of the SBP-box gene family in Petunia, BMC Genomics, 2018, vol. 19, p. 193. https://doi.org/10.1186/s12864-018-4537-9