Apis cerana abansis is a unique ecological type of the Asian bees, Apis cerana, distributed mainly over China’s western Sichuan plateau. We used Illumina sequencing to obtain the complete mitochondrial genome of A. c. abansis and determined the phylogenetic relationships between A. c. abansis and other Apis cerana ecotypes. The mitogenome of A. c. abansis contains 15,694 bps and includes 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and 1 A+T-rich control region. All protein-coding genes are initiated by ATT or ATG codons and terminated by the typical stop codons, TAA or TAG, but the start codon of the ATP8 gene (one of the 13 protein-coding genes) is ATC. The ML phylogenetic tree based on the 13 protein-coding genes showed that A. c. abansis formed a sister group with the Yun-Gui Plateau Chinese bee and the Central China Chinese bee. This study provides a scientific basis for the protection and breeding of A. c. abansis.
Keywords: Apis cerana abansis; complete mitochondrial genome; Illumina sequencing; Phylogenetic relationships

Full text and supplemented materials
References
Alburaki M., Moulin S., Legout H. et al., Mitochondrial structure of Eastern honeybee populations from Syria, Lebanon and Iraq, Apidologie, 2011, vol. 42, pp. 628–641. https://doi.org/10.1007/s13592-011-0062-4
Arias, M.C. and Sheppard, W.S., Phylogenetic relationships of honeybees (Hymenoptera: Apinae: Apini) inferred from nuclear and mitochondrial DNA sequence data, Mol. Phylogenet. Evol., 2005, vol. 37, no. 1, pp. 25–35. https://doi.org/10.1016/j.ympev.2005.02.017
Bertrand, B., Alburaki, M., Legout, H., et al., MtDNA COI-COII marker and drone congregation area: An efficient method to establish and monitor honeybee (Apis mellifera L.) conservation centres, Mol. Ecol. Resour., 2015, vol. 15, pp. 673–683. https://doi.org/10.1111/1755-0998.12339
Chen, C., Liu, Z.G., Luo, Y.X., Xu, Z., Wang, S.H., Zhang, X.W., Dai, R.G., Gao, J.L., Chen, X., Guo, H.K., et al., Managed honeybee colony losses of the Eastern honeybee (Apis cerana) in China (2011–2014), Apidologie, 2017, vol. 48, no. 5, pp. 692–702. https://doi.org/10.3390/insects12100891
Cherevatov, O.V., Panchuk, I.I., Kerek, S.S., and Volkov, R.A., Molecular diversity of the CoI–CoII spacer region in the mitochondrial genome and the origin of the Carpathian bee, Cytol. Genet., 2019, vol. 53, no. 4, pp. 276–281. https://doi.org/10.3103/10.3103/s0095452719040030
Franck, P., Garnery, L., and Loiseau, B.P., Genetic diversity of the honeybee in Africa: microsa -tellite and mitochondrial data, Heredity, 2001, vol. 86, pp. 420–430. https://doi.org/10.1007/978-94-007-6928-1
Ge, F.C., Shi, W., Luo, Y.X., Yan, Z.L., and Xue, Y.B., Animal Genetic Resources in China (Bee), Beijing: China Agric. Press, 2011.
He, B., Su, T., Niu, Z., Zhou, Z., Gu, Z., and Huang, D., Characterization of mitochondrial genomes of three Andrena bees (Apoidea: Andrenidae) and insights into the phylogenetics, Int. J. Biol. Macromol., 2019, vol. 127, pp. 118–125. https://doi.org/10.1016/j.ijbiomac.2019.01.036
Hepburn, H.R., Smith, D.R., Radloff, S.E. and Otis, G.W., Infraspecific categories of Apis cerana: morphometric, allozymal and mtDNA diversity, Apidologie, 2001, vol. 32, no. 1, pp. 3–23. https://doi.org/10.1051/apido:2001108
Hong-Wei, T., Guo-Hua, L., Xia, D., Rui-Qing, L., Hui-Qun, S., Si-Yang, H., Zi-Guo, Y., Guang-Hui, Z., Xing-Quan, Z., and Guy, S., The complete mitochondrial genome of the asiatic cavity-nesting honeybee Apis cerana (Hymenoptera: Apidae), PloS One, 2011, vol. 6, no. 8, p. e23008. https://doi.org/10.1371/journal.pone.0023008
Ilyasov, R.A., Han, G.Y., Lee, M.L., Kim, K.W., Proshchalykin, M.Y., Lelej, A.S., Takahashi, J.I., and Kwon, H.W., Phylogenetic relationships of Russian Far-East Apis cerana with other North Asian Populations., J. Apicult. Sci., 2019, vol. 63, no. 2. https://doi.org/10.2478/JAS-2019-0024
Jia, Y., Qiu, G., Cao, C., Wang, X., Jiang, L., Zhang, T., Geng, Z., and Jin, S., Mitochondrial genome and phylogenetic analysis of Chaohu duck, Gene, 2023, vol. 851, p. 147018. https://doi.org/10.1016/j.gene.2022.147018
Katoh, K. and Standley, D.M., MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol. Biol. Evol., 2013, vol. 30, pp. 772–780. https://doi.org/10.1093/molbev/mst010
Lan, L., Shi, P., Song, H., Tang, X., Zhou, J., Yang, J., Yang, M., and Xu, J., De novo genome assembly of Chinese Plateau honeybee unravels intraspecies genetic diversity in the Eastern Honeybee, Apis cerana, Insects, 2021, vol. 12, no. 10. https://doi.org/10.3390/insects12100891
Librado Rozas., DnaSP v5: a software for comprehensive analysis of DNA polymorphism data, Bioinformatics (Oxford), 2009, vol. 25, no. 11, pp. 1451–1452. https://doi.org/10.1093/bioinformatics/btp187
Liu, X.W., Chesters, D., Dai, Q.Y., et al., Integrative profiling of bee communities from habitats of Tropical Southern Yunnan (China), Sci. Rep., 2017, no. 7, p. 5336. https://doi.org/10.1038/s41598-017-05262-8
Metlitska, O.I., Polishchuk, V.P., and Taran, S.I., The use of comparative an molecular-genetic evaluation under study of strain genuineness of Ukrainian bees, Anim. Biol., 2010, vol. 12, no. 1, pp. 254–259.
Okuyama, H., Wakamiya, T., Fujiwara, A., Washitani, I., and Takahashi, J.-I., Complete mitochondrial genome of the honeybee Apis cerana native to two remote islands in Japan, Conserv. Genet. Resour., 2017. https://doi.org/10.1007/s12686-017-0721-5
Pentek-Zakar, E., Oleksa, A., Borowik, T., and Kusza, S., Population structure of honey bees in the Carpathian Basin (Hungary) confirms introgression from surrounding subspecies, Ecol. Evol., 2015, vol. 5, no. 23, pp. 5456–5467. https://doi.org/10.1002/ece3.1781
Pereira, A., Albano, M., Alves, F., Andrade, B., and Júnior, A., Influence of apitoxin and melittin from Apis mellifera bee on Staphylococcus aureus strains, Microb. Pathog., 2020, vol. 141, p. 104011. https://doi.org/10.1016/j.micpath.2020.104011
Rogers, S.O. and Bendich, A.J., Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues, Plant Mol. Biol., 1985, vol. 5, no. 2, pp. 69–76. http://doi.org/2010.1007/bf00020088
Ruttner, F., Biogeography and Taxonomy of Honey Bees, Berlin: Springer-Verlag, 1988.
Tan, K., Qu, Y., Wang, Z., et al., Haplotype diversity and genetic similarity among populations of the Eastern honey bee from Himalaya-Southwest China and Nepal (Hymenoptera: Apidae), Apidologie, 2016, vol. 47, pp. 197–205. https://doi.org/10.1007/s13592-015-0390-x
Teacher, A.G., André, C., Merilä, J., et al., Whole mitochondrial genome scan for population structure and selection in the Atlantic herring, BMC Evol. Biol., 2012, vol. 12, p. 248 https://doi.org/10.1186/1471-2148-12-248
Theisen-Jones, H. and Bienefeld, K., The Asian honeybee (Apis cerana) is significantly in decline, Bee World, 2017, vol. 93, no. 4, pp. 90–97.
Thi, H.D., Olga, C., Arndt, Vh., Quang, M.B., and Sy, V.L., UFBoot2: improving the ultrafast bootstrap approximation, Mol. Biol. Evol., 2017, vol. 35, p. 518. https://doi.org/10.1093/molbev/msx281
Wang, S., Genetic diversity of Apis cerana abanisis and high-yield beekeeping technology development and utilization, Msc Thesis, Ya’an: Sichuan Agricultural Univ., 2018.
Xu, D., Sun, M., Gao, Z., Zhou, Y., Wang, Q., and Chen, L., Comparison and phylogenetic analysis of mitochondrial genomes of Talpidae animals, Animals, 2023, vol. 13, p. 186. https://doi.org/10.3390/ani13020186
Zhao, W., Tan, K., Zhou, D., et al., Phylogeographic analysis ofApis cerana populations on Hainan Island and southern mainland China, based on mitochondrial DNA sequences, Apidologie, 2014, vol. 45, pp. 21–33. https://doi.org/10.1007/s13592-013-0223-8