TSitologiya i Genetika 2024, vol. 58, no. 2, 58-60
Cytology and Genetics 2024, vol. 58, no. 2, 126–135, doi: https://www.doi.org/10.3103/S0095452724020075

Сharacterization of the complete chloroplast genome and evolutionary position of Clematis tomentella

Liu W., Wang Z., Tian Y., Ji B.

  1. Ningxia Technical College of Wine and Desertification Prevention, Yinchuan 750199, Ningxia, China
  2. Institute of Forestry and Grassland Ecology, Ningxia Academy of Agriculture and Forestry Science, Yinchuan 750011, Ningxia, China
  3. Ningxia Key Laboratory of Desertification Control and Soil and Water Conservation, Ningxia Academy of Agriculture and Forestry Science, Yinchuan 750011, Ningxia, China

Clematis tomentella 2001 (Ranunculaceae) is a typical drought-tolerant sand-fixing plant in desert ecosystem in northwest China. To elucidate the phylogenetic status of C. tomentella and its related species, we determined the complete chloroplast (cp) genome and analyzed their interspecific relationships. The result showed [Rev1] that the cp genome of C. tomentella was 159,816 bp in length, including two inverted repeats of 31,045 bp, a large single copy region of 79,535 bp, and a small single copy region of 18,191 bp. 136 genes were annotated across the whole cp genome, including 92 protein-coding genes, 8 rRNA genes, and 36 tRNA genes, as well as the GC content accounted for 38 %. Crucially, we found that the regions of psbE-petL, trnG_UCC-atpA, ndhF-rpl32, and rps8-infA were highly divergent, which could be marked as DNA barcodes for the identification of C. tomentella in Ranunculaceae. A maximum likelihood phylogenetic tree revealed that C. tomentella was closely related to C. fruticosa. Our results provide the references and implications for the phylogenetic study of Clematis in Ranunculaceae in the future.

Keywords: C. tomentella; complete chloroplast genome; Clematis; gene; phylogenetic analysis

TSitologiya i Genetika
2024, vol. 58, no. 2, 58-60

Current Issue
Cytology and Genetics
2024, vol. 58, no. 2, 126–135,
doi: 10.3103/S0095452724020075

Full text and supplemented materials

References

Altschul, S., Madden, T., Schäffer, A., Zhang, J., Zhang, Z., and Miller, W., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 1997, vol. 25, pp. 3389–3402. https://doi.org/10.1093/nar/25.17.3389

Alzahrani, D., Albokhari, E., Abba, A., and Yaradua, S., The first complete chloroplast genome sequences in Resedaceae: Genome structure and comparative analysis, Sci. Prog., 2021, vol. 104, no. 4, p. 368504211059973. https://doi.org/10.1177/00368504211059973

Amiryousefi, A., Hyvonen, J., and Poczai, P., IRscope: an online program to visualize the junction sites of chloroplast genomes, Bioinformatics, 2018, vol. 34, no. 17, pp. 3030–3031. https://doi.org/10.1093/bioinformatics/bty220

Beier, S., Thiel, T., Münch, T., Scholz, U., and Mascher, M., MISA-web: a web server for microsatellite prediction, Bioinformatics, 2017, vol. 33, pp. 2583–2585. https://doi.org/10.1093/bioinformatics/btx198

Chase, M.W., Christenhusz, M.J.M., Fay, M.F., Byng, J.W., Judd, W.S., Soltis, D.E., Mabberley, D.J., Sennikov, A.N., Soltis, P.S., and Stevens, P.F., An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV, Bot. J. Linn. Soc., 2016, vol. 181, no. 1, pp. 1–20. https://doi.org/10.1111/boj.12385

Chen, X., Chang, Q., Xia, P., Liang, Z., and Yan, K., The complete chloroplast genome of Clematis henryi var. ternate (Ranunculaceae), Mitochondrial DNA, Part B: Resources, 2021, vol. 6, no. 4, pp. 1319–1320. https://doi.org/10.1080/23802359.2021.1907807

Choi, K.S., Ha, Y.H., Gil, H.Y., Choi, K., Kim, D.K., and Oh, S.H., Two Korean endemic Clematis chloroplast genomes: Inversion, reposition, expansion of the inverted repeat region, phylogenetic analysis, and nucleotide substitution rates, Plants (Basel), 2021, vol. 10, no. 2, p. 397. https://doi.org/10.3390/plants10020397

Cui, N., Liao, B., Liang, C., Li, S., Zhang, H., Xu, J., Li, X., and Chen, S., Complete chloroplast genome of Salvia plebeia: organization, specific barcode and phylogenetic analysis, Chin. J. Nat. Med., 2020, vol. 18, no. 8, pp. 563–572. https://doi.org/10.1016/S1875-5364(20)30068-6

Dong, W., Liu, J., Yu, J., Wang, L., and Zhou, S., Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding, PLoS One, 2012, vol. 7, no. 4, p. e35071. https://doi.org/10.1371/journal.pone.0035071

Frazer, K., Pachter, L., Poliakov, A., Rubin, E.M., and Dubchak, I., VISTA: computational tools for comparative genomics, Nucleic Acids Res., 2004, vol. 32, pp. W273–W279. https://doi.org/10.1093/nar/gkh458

Greiner, S., Lehwark, P., and Bock, R., OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes, Nucleic Acids Res., 2019, vol. 47, pp. W59–W64. https://doi.org/10.1101/545509

Guan, K.J., Xiao, P.G., and Pan, K.Y., Flora of China: Ranunculaceae, Beijing: Sci. Press (China), 1979.

Guo, Y.Q., Shi, J.N., Liu, B., Na W.H., Guo, J., and Shao, F., Studies on seeding and cutting propagating of Clematis canescens, an endangered wild plant (in Chinese), For. Res., 2006, vol. 19, no. 5, pp. 672–674. https://doi.org/10.3321/j.issn:1001-1498.2006.05.026

Guo, Y.Q., Ding, X.L., Liu, B., Shao, F., and Na, W.H., Clematis canescens, an endangered wild ornamental plant in Ningxia, China (in Chinese), China Seed Ind., 2007, vol. 3, p. 55. https://doi.org/10.19462/j.cnki.1671-895x.2007.03.033

Huang, D. and Cronk, Q.C.B., Plann: A command-line application for annotating plastome sequences, Appl. Plant Sci., 2015, vol. 3, p. 1500026. https://doi.org/10.3732/apps.1500026

Jiang, M., Wang, J., and Zhang, H., The complete plastome sequence of Clematis guniuensis (Ranunculaceae), a new plant species endemic to China, Mitochondrial DNA, Part B: Resources, 2020, vol. 5, no. 1, pp. 408–409. https://doi.org/10.1080/23802359.2019.1704662

Katoh, K. and Standley, D., MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol. Biol. Evol., 2013, vol. 30, pp. 772–780. https://doi.org/10.1093/molbev/mst010

Konhar, R., Debnath, M., Vishwakarma, S., Bhattacharjee, A., Sundar, D., Tandon, P., Dash, D., and Biswal, D.K., The complete chloroplast genome of Dendrobium nobile, an endangered medicinal orchid from north-east India and its comparison with related Dendrobiumspecies, PeerJ, 2019, vol. 7, p. e7756. https://doi.org/10.7717/peerj.7756

Kühn, I. and Klotz, S., Urbanization and homogenization-comparing the floras of urban and rural areas in Germany, Biol. Conserv., 2005, vol. 127, no. 3, pp. 292–300. https://doi.org/10.1016/j.biocon.2005.06.033

Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K., MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms, Mol. Biol. Evol., 2018, vol. 35, no. 6, pp. 1547–1549. https://doi.org/10.1093/molbev/msy096

Li, M., Yang, B., Chen, Q., Zhu, W., Ma, J., and Tian, J., The complete chloroplast genome sequence of Clematis terniflora DC. (Ranunculaceae), Mitochondrial DNA, Part A, 2016, vol. 27, no. 4, pp. 2470–2472. https://doi.org/10.3109/19401736.2015.1033702

Li, J., Li, H., Zhi, J., Shen, C., Yang, X., and Xu, J., Codon usage of expans in genes in Populus trichocarpa, Curr. Bioinf., 2017, vol. 12, no. 5, pp. 452–461. https://doi.org/10.2174/1574893611666161008195145

Liu, B., Guo, J., Guo, Y.Q., Shao, F., and Na, W.H., Effects of different substrates and different chemicals on rooting of Clematis canescenscuttings (in Chinese), Ningxia Agric. For. Sci. Technol., 2007, vol. 4, pp. 11–13.

Mishra, P., Kumar, A., Nagireddy, A., Daya, N., and Ashutosh, M., DNA barcoding: an efficient tool to overcome authentication challenges in the herbal market, Plant Biotechnol. J., 2015, vol. 14, pp. 8–21. https://doi.org/10.1111/pbi.12419

Nurk, S., Bankevich, A., Antipov, D., Gurevich, A., Korobeynikov, A., Lapidus, A., Prjibelski, A., Pyshkin, A., Sirotkin, A., and Sirotkin, Y., Assembling single-cell genomes and mini-metagenomes from chimeric MDA products, J. Comput. Biol., 2013, vol. 20, no. 10, pp. 714–737. https://doi.org/10.1089/cmb.2013.0084

Park, B.K., Ghimire, B., Ha, Y.H., Son, D.C., and Kim, D.K., Complete chloroplast genome of Clematis taeguensis (Ranunculaceae), an endemic species from South Korea, Mitochondrial DNA, Part B: Resources, 2021, vol. 6, no. 4, pp. 1496–1497. https://doi.org/10.1080/23802359.2021.1910080

Powell, W., Morgante, M., Mcdevitt, R., Vendra-min, G.G., and Rafalski, J.A., Polymorphic simple sequence repeat regions in chloroplast genomes: Applications to the population genetics of pines, Proc. Natl. Acad. Sci. U. S. A., 1995, vol. 92, pp. 7759–7763. https://doi.org/10.1073/pnas.92.17.7759

Rozas, J., Ferrermata, A., Sánchezdelbarrio, J., Guiraorico, S., Librado, P., Ramosonsins, S., and Sánchezgracia, A., DnaSP 6: DNA sequence polymorphism analysis of large datasets, Mol. Biol. Evol., 2017, vol. 34, pp. 3299–3302. https://doi.org/10.1093/molbev/msx248

Stefanova, P., Taseva, M., Georgieva, T., Gotcheva, V., and Angelov, A., A modified CTAB method for DNA extraction from soybean and meat products, Biotechnol. Biotechnol. Equip., 2013, vol. 27, no. 3, pp. 3803–3810. https://doi.org/10.5504/BBEQ.2013.0026

VanDo, T., Xu, B., and Gao, X., Molecular phylogeny and character evolution of Flemingia (Leguminosae, Papilionoideae, Phaseoleae, Cajaninae) inferred from three cpDNA and nrITS sequence data, Plant Syst. Evol., 2021, vol. 307, p. 30. https://doi.org/10.1007/S00606-021-01749-0

Wang, Z. and Ren, H., The role of native plants in vegetation restoration (in Chinese), Hubei Agric. Sci., 2018, vol. 57, no. 10, pp. 83–87. https://doi.org/10.14088/j.cnki.issn0439-8114.2018.10.020

Wei, F., Tang, D., Wei, K., Qin, F., Li, L., Lin, Y., Zhu, Y., Aziz, K., Haneef, K., and Miao, J., The complete chloroplast genome sequence of the medicinal plant Sophora tonkinensis, Sci. Rep., 2020, vol. 10, p. 12473. https://doi.org/10.1038/s41598-020-69549-z

Wei, H., Pan, L., Tian, S., Tang, Z., He, H., Zhang, H., and Jiang, M., Chloroplast genome sequence characterization and phylogenetic analysis of Clematis henryi, Chin. Tradit. Herbal Drugs, 2022, vol. 53, no. 12, pp. 3766–3773. https://doi.org/10.7501/j.issn.0253-2670.2022.12.023

Xiang, Q.-H., He, J., Liu, H.-J., Lyu, R.-D., Yao, M., Guan, W.-B., and Xie, L., The complete chloroplast genome sequences of three Clematis species (Ranunculaceae), Mitochondrial DNA, Part B: Resources, 2019, vol. 4, no. 1, pp. 834-835. https://doi.org/10.1080/23802359.2019.1567290

Yang, Z., Huang, Y., An, W., Zheng, X., Huang, S., and Liang, L., Sequencing and structural analysis of the complete chloroplast genome of the medicinal plant Lycium chinense Mill, Plants (Basel), 2019, vol. 8, no. 4, p. 87. https://doi.org/10.3390/plants8040087

Yang, Y.-C., Wang, N., Zhang, W., and Zhou, T., The complete chloroplast genome of Clematis fruticosa Turcz. (Ranunculaceae), Mitochondrial DNA, Part B: Resources, 2020, vol. 5, no. 2, pp. 1908–1909. https://doi.org/10.1080/23802359.2020.1754951