TSitologiya i Genetika 2024, vol. 58, no. 1, 25-33
Cytology and Genetics 2024, vol. 58, no. 1, 21–28, doi: https://www.doi.org/https://doi.org/10.3103/S0095452724010043

Effect of 28-homobrassinolide on fatty acid metabolism during germination of Crambe tatarica under salinity stress

Kretynin S.V., Kolesnikov Ya.S., Kravets V.S., Blume Ya.B.

  1. V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine 1, Acad. Kukhara Str., Kyiv, 02660, Ukraine
  2. Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine, 2a, Osypovskoho Str., Kyiv, 04123, Ukraine

SUMMARY. To study the effect of brassinosteroids and salinity stress on the fatty acid metabolism in the seeds of oil plants, we analyzed the turnover of fatty acids in the seeds of Crambe tatarica under the mentioned conditions. The results of gas-liquid chromatography and mass-spectrometry demonstrated the decrease in the level of palmitic and linoleic fatty acids along with the increase in the level of oleic, eicosenoic, and docosenoic fatty acids in C. tatarica seeds in response to 28-homobrassinolide under salinity stress on some stages of seed germination. The found regularities allowed for the assumption that 28-homobrassinolide promotes the stabilization of fatty acid composition of C. tatarica seeds, disrupted under salinity stress. It may indicate the possibility of modulating the activity or expression of desaturase genes and the enzymes of fatty acid oxidation under the effect of brassinosteroids.

Keywords: Crambe tatarica, seeds, fatty acids, salinity stress, brassinosteroids, 28-homobrassinolide

TSitologiya i Genetika
2024, vol. 58, no. 1, 25-33

Current Issue
Cytology and Genetics
2024, vol. 58, no. 1, 21–28,
doi: https://doi.org/10.3103/S0095452724010043

Full text and supplemented materials

Free full text: PDF  

References

Berzuini, S., Zanetti, F., Christou, M., Alexopoulou, E., Krzyżaniak, M., Stolarsk, M.J., Ferioli, F., and Monti, A., Optimization of agricultural practices for crambe in Europe, Ind. Crops Prod., 2021, vol. 171, p. 113880. https://doi.org/10.1016/j.indcrop.2021.113880

Chen, C., Chen, H., Han, C., et al., 24-Epibrassinolide promotes fatty acid accumulation and the expression of related genes in Styrax tonkinensis seeds, Int. J. Mol. Sci., 2022, vol. 23, no. 16, p. 8897. https://doi.org/10.3390/ijms23168897

Chen, C., Chen, H., Han, C., et al., 24-Epibrassinolide and methyl jasmonate promoted seed development of Styrax tonkinensis and affected seed chemical compositions, especially seed lipid metabolism, J. Plant Growth Regul., 2023, vol. 42, no. 4, pp. 2162–2175. https://doi.org/10.1007/s00344-022-10689-z

Costa, E., Almeida, M.F., Alvim-Ferraz, C., et al., The cycle of biodiesel production from Crambe abyssinica in Portugal, Ind. Crops Prod., 2019, vol. 129, pp. 51–58. https://doi.org/10.1016/j.indcrop.2018.11.032

de Vasconcelos, A., Chaves, G.L., Souza, F., Gheyi, H., and Fernandes, J., Salinity effects on development and productivity of crambe (Crambe abyssinica) under greenhouse conditions, Am. J. Plant Sci., 2015, vol. 6, pp. 839–847. https://doi.org/10.4236/ajps.2015.67091

Geilen, K., Heilmann, M., Hillmer, S., et al., WRKY43 regulates polyunsaturated fatty acid content and seed germination under unfavourable growth conditions, Sci. Rep., 2017, vol. 7, no. 1, p. 14235. https://doi.org/10.1038/s41598-017-14695-0

Janeczko, A., Hura, K., Skoczowski, A., et al., Temperature-dependent impact of 24-epibrassinolide on the fatty acid composition and sugar content in winter oilseed rape callus, Acta Physiol. Plant., 2009, vol. 31, pp. 71–79. https://doi.org/10.1007/s11738-008-0202-2

Jankowski, K.J., Sokólski, M., Szatkowski, A., and Kozak, M., Crambe – Energy efficiency of biomass production and mineral fertilization. A case study in Poland, Ind. Crops Prod., 2022, vol. 182, p. 114918. https://doi.org/10.1016/j.indcrop.2022.114918

Kononenko, L.M., Manzii, O.P., Poltoretska, N.M., and Kochovska, I.V., Yield structure of crambe (Crambe abyssinica Hochst.) under the effect of seeding rate and varietal characteristics, Adv. Agritechnol., 2023, vol. 11, no. 1. https://doi.org/10.47414/na.11.1.2023.277054

Li, Y., Beisson, F., Pollard, M., et al., Oil content of Arabidopsis seeds: The influence of seed anatomy, light and plant-to-plant variation, Phytochem., 2006, vol. 67, no. 9, pp. 904–915. https://doi.org/10.1016/j.phytochem.2006.02.015

Liu, N., Chen, J., Wang, T., et al., Overexpression of WAX INDUCER1/SHINE1 gene enhances wax accumulation under osmotic stress and oil synthesis in Brassica napus, Int. J. Mol. Sci., 2019, vol. 20, no. 18, p. 4435. https://doi.org/10.3390/ijms20184435

Martins, L., Costa, F., Lopes, J., et al., Influence of pre-germination treatments and temperature on the germination of crambe seeds (Crambe abyssinica Hochst), Idesia (Arica), 2012, vol. 30, no. 3, pp. 23–28. https://doi.org/10.4067/S0718-34292012000300003

Pavel, P., Přemysl, Š., Pazderů, K., et al., Effects of biologically active substances used in soybean seed treatment on oil, protein and fibre content of harvested seeds, Plant Soil Environ., 2017, vol. 63, no. 12, pp. 564–568. https://doi.org/10.17221/702/2017-PSE

Pushkarova, N. and Yemets, A., Biotechnological approach for improvement of Crambe species as valuable oilseed plants for industrial purposes, RSC Adv., 2022, vol. 12, no. 12, pp. 7168–7178. https://doi.org/10.1039/d2ra00422d

Pushkarova, N.O., Kalista, M.S., Kharkhota, M.A., et al., Crambe tataria sebeók seeds and plants grown in vitro and in vivo fatty acid composition comparison, Potravinarstvo, 2016, vol. 10, no. 1, pp. 494–498. https://doi.org/10.5219/646:10.5219/646

Righini, D., Zanetti, F., and Monti, A., The bio-based economy can serve as the springboard for camelina and crambe to quit the limbo, OCL, 2016, vol. 23, no. 5, p. D504. https://doi.org/10.1051/ocl/2016021

Rudloff, E. and Wang, Y., Crambe, in Wild Crop Relatives: Genomic and Breeding Resources, Kole, C., Eds., Berlin: Springer-Verlag, 2011. https://doi.org/10.1007/978-3-642-14871-2_5

Sahni, S., Prasad, B.D., Liu, Q., et al., Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance, Sci. Rep., 2016, vol. 6, p. 28298. https://doi.org/10.1038/srep28298

Samarappuli, D., Zanetti, F., Berzuini, S., and Berti, M.T., Crambe (Crambe abyssinica Hochst). A non-food oilseed crop with great potential: A review, Agronomy, 2020, vol. 10, no. 9, p. 1380. https://doi.org/10.3390/agronomy10091380

Silva, M.F., Araújo, E.F., Silva, L.J., et al., Tolerance of crambe (Crambe abyssinica Hochst) to salinity and water stress during seed germination and initial seedling growth, Ciência Agrotecnologia, 2019, vol. 43, no. 1, pp. 1–13. https://doi.org/10.1590/1413-7054201943025418

Urrestarazu, M., Gallegos-Cedillo, V.M., Ferrón-Carrillo, F., Guil-Guerrero, J.L., Lao, M.T., and Álvaro, J.E., Effects of the electrical conductivity of a soilless culture system on gamma linolenic acid levels in borage seed oil, PLoS One, 2019, vol. 14, no. 2, p. e0207106. https://doi.org/10.1371/journal.pone.0207106

Xiao, R., Zou, Y., Guo, X., et al., Fatty acid desaturases (FADs) modulate multiple lipid metabolism pathways to improve plant resistance, Mol. Biol. Rep., 2022, vol. 49, no. 10, pp. 9997–10011. https://doi.org/10.1007/s11033-022-07568-x

Yang, Y., Kong, Q., Lim, A.R.Q., et al., Transcriptional regulation of oil biosynthesis in seed plants: Current understanding, applications, and perspectives, Plant Commun., 2022, vol. 3, no. 5, p. 100328. https://doi.org/10.1016/j.xplc.2022.100328

Yao, T., Xie, R., Zhou, C., et al., Roles of brossinosteroids signaling in biotic and abiotic stresses, J. Agric. Food Chem., 2023, vol. 71, no. 21, pp. 7947–7960. https://doi.org/10.1021/acs.jafc.2c07493

You, Z., Zhang, Q., Peng, Z., et al., Lipid droplets mediate salt stress tolerance in Parachlorella kessleri, Plant Physiol., 2019, vol. 181, no. 2, pp. 510–526. https://doi.org/10.1104/pp.19.00666

Yuan, S.-W., Wu, X.-L., Liu, Z.-H., et al., Abiotic stresses and phytohormones regulate expression of FAD2 gene in Arabidopsis thaliana, J. Integr. Agric., 2012, vol. 11, no. 1, pp. 62–72. https://doi.org/10.1016/S1671-2927(12)60783-4

Zhang, Z., Luo, Y., Wang, X., et al., Fruit spray of 24-epibrassinolide and fruit shade alter pericarp photosynthesis activity and seed lipid accumulation in Styrax tonkinensis, J. Plant Growth Regul., 2018, vol. 37, no. 4, pp. 1066–1084. https://doi.org/10.1007/s00344-017-9769-4