TSitologiya i Genetika 2024, vol. 58, no. 2, 16-23
Cytology and Genetics 2024, vol. 58, no. 2, 92–98, doi: https://www.doi.org/10.3103/S0095452724020026

Utrastructure of leaf mesophyll cells of Alyssum desertorum L. under soil flooding

Akimov Yu.M., Vorob’ova T.V.

  • M.G. Kholodny Institute of Botany, NAS of Ukraine, Tereschenkivska str., 2, Kyiv 01601, Ukraine

SUMMARY. For the first time, the effect of 5- and 10-day soil flooding on the ultrastructure of the leaf  mesophyll cells of the psammophyte desert beetroot (Alyssum desertorum L.) was investigated. The seeds for the experiments were collected from plants of dry sandy areas of the gully slopes of the ravine forest in the steppe zone of the Dnipropetrovsk region. It is shown that a characteristic feature of the leaf photosynthetic cells of this species is the presence of single and large up to 6 μm peroxisomes, which are in close contact with chloroplasts and mitochondria, playing a key role in photorespiration. The general organization of palisade parenchyma cells on the 5th and 10th days of soil flooding is basically similar to that in the control. A slight decrease in the size of peroxisomes on the 5th day of flooding and its increase on the 10th day, and more often formation of multivesicular structures (assembly of endomembranes) in the vacuole, which is considered as an autophagy enhancement of the cytoplasm under hypoxia, were noted. Differences in the ultrastructure of chloroplasts under the influence of soil flooding consisted in a significant, almost two-fold increase in transient starch, the size and number of plastoglobules, especially on the 10th day, swelling of granal and stromal thylakoids on the 10th day. Changes in the ultrastructure of desert beetroot chloroplasts under the influence of soil flooding coincide with those of mesophytes studied in this respect. The obtained data on the chloroplast ultrastructure of de-sert beet psammophyte prove the functioning of the photosynthetic apparatus in conditions of short-term soil flooding, that contributes to the survival of seedlings. The subsequent yellowing of leaves and death of plants indicates, as is assumed, the lack of systemic adaptation, primarily metabolic, that is, the transition to anaerobic metabolism, in this species to long-term hypoxia.

Keywords:

TSitologiya i Genetika
2024, vol. 58, no. 2, 16-23

Current Issue
Cytology and Genetics
2024, vol. 58, no. 2, 92–98,
doi: 10.3103/S0095452724020026

Full text and supplemented materials

Free full text: PDF  

References

Akyol, Y., Kocabas, O., Bozdag, B., Minareci, E., and Ozdemir, C., Vascular anatomy of Alyssum alyssoides and A. desertorum (Brassicaceae) from Eastern Anatolia, Turkey, Phytol. Canica, 2017, vol. 23, pp. 3–6.

Bailey-Serres, J. and Voesenek, L., Flooding stress: acclimations and genetic diversity, Ann. Rev. Plant Biol., 2008, vol. 59, pp. 313–339. https://doi.org/10.1146/annurev.arplant.59.032607.092752

Bailey-Serres, J., Lee, S., and Brinton, E., Waterproofing crops: effective flooding survival strategies, Plant Physiol., 2012, vol. 160, pp. 1698–1709. https://doi.org/10.1104/pp.112.208173

Gravatt, D.A. and Kirby, C.J., Patterns of photosynthesis and starch allocation in seedlings of four bottomland hardwood tree species subjected to flooding, Tree Physiol., 1998, vol. 18, pp. 411–417. https://doi.org/10.1093/treephys/18.6.411

Gu, L., Grodzinski, B., Han, J., et al., Granal thylakoid structure and function: explaining an enduring mystery of higher plants, New Phytol., 2022, vol. 236, pp. 319–329. https://doi.org/10.1111/nph.18371

Hirabayashi, Y., Mahendran, R., Koirala, S., et al., Global flood risk under climate change, Nat. Clim. Change, 2013, vol. 3, pp. 816–821. https://doi.org/10.1038/nclimate1911

Hu, J., Baker, A., Bartel, B., et al., Plant peroxisomes: biogenesis and function, Plant Cell, 2012, vol. 24, no. 6, pp. 2279–2303. https://doi.org/10.1105/tpc.112.096586

Iljinska, A.P., Species of the genus Alyssum L. (sect. Alyssum) in the flora of Ukraine, Ukr. Bot. J., 2005, vol. 62, no. 2, pp. 223–234.

Jansen, R.L.M., Santana-Molina, C., van den Noort, M., Devos, D.P., and van der Klei, I.J., Comparative genomics of peroxisome biogenesis proteins: making sense of the PEX proteins, Front. Cell Dev. Biol., 2021, vol. 9, p. 654163. https://doi.org/10.3389/fcell.2021.654163

Kanai, M., Higuchi, K., Hagihara, T., et al., Common reed produces starch granules at the shoot base in response to salt stress, New Phytol., 2007, vol. 176, pp. 572–580.

Kao, Y.T., Gonzalez, K.L., and Bartel, B., Peroxisome function, biogenesis, and dynamics in plants, Plant Physiol., 2018, vol. 176, pp. 162–177. https://doi.org/10.1104/pp.17.01050

Kirchhoff, H., Chloroplast ultrastructure in plants, New Phytol., 2019, vol. 223, pp. 565–574. https://doi.org/10.1111/nph.15730

Klymchuk, D.O., Brown, C.S., Chapman, D.K., Vorobyova, T.V., and Martyn, G.M., Cytochemical localization of calcium in soybean root cap cells in microgravity, Adv. Space Res., 2001, vol. 27, pp. 967–972.

Kreuzwieser, J. and Rennenberg, H., Molecular and physiological responses of trees to waterlogging stress, Plant Cell Environ., 2014, vol. 37, pp. 2245–2259. https://doi.org/10.1111/pce.12310

Liu, Z., Cheng, R., Xiao, W., et al., Effect of off-season flooding on growth, photosynthesis, carbohydrate partitioning, and nutrient uptake in Distylium chinense, PLoS One, 2014, vol. 9, p. e107636. https://doi.org/10.1371/journal.pone.0107636

Merchant, A., Peuke, A.D., Keitel, C., et al., Phloem sap and leaf δ13C-carbohydrates and amino acid concentrations in Eucalyptus globulus change systematically according to flooding and water deficit treatment, J. Exp. Bot., 2010, vol. 61, pp. 1785–1793. https://doi.org/10.1093/jxb/erq045

Morris, J. and Brewin, P., The impact of seasonal flooding on agriculture: the spring 2012 floods in Somerset, England, J. Flood Risk Manage., 2014, vol. 7, pp. 128–140. https://doi.org/10.1111/jfr3.12041

Nasrullah, A.S., Umar, M., et al., Flooding tolerance in plants: from physiological and molecular perspectives, Braz. J. Bot., 2022, vol. 45, pp. 1161–1176. https://doi.org/10.1007/s40415-022-00841-0

Oikawa, K., Hayashi, M., Hayashi, Y., and Nishimura, M., Re-evaluation of physical interaction between plant peroxisomes and other organelles using live-cell imaging techniques, J. Integr. Plant Biol., 2019, vol. 61, pp. 836–852. https://doi.org/10.1111/jipb.12805

Pan, R., Jun, L., Saisai, W., and Jianping, H., Peroxisomes: versatile organelles with diverse roles in plants, New Phytol., 2020, vol. 225, pp. 1410–1427. https://doi.org/10.1111/nph.16134

Patel, P., Singh, A., Tripathi, N., et al., Flooding: abiotic constraint limiting vegetable productivity, Adv. Plants Agric. Res., 2014, vol. 1, pp. 96–103. https://doi.org/10.15406/apar.2014.01.00016

Pshybytko, E., Kruk, J., Lysenko, E., et al., Environ. Exp. Bot., 2022, vol. 206. https://doi.org/10.1016/j.envexpbot.2022.105151

Ren, B., Zhang, J., Dong, S., Liu, P., and Zhao, B., Effects of waterlogging on leaf mesophyll cell ultrastructure and photosynthetic characteristics of summer maize, PloS One, 2016, vol. 11, p. e0161424

Reumann, S. and Bartel, B., Plant peroxisomes: recent discoveries in functional complexity, organelle homeostasis, and morphological dynamics, Curr. Opin. Plant B-iol., 2016, vol. 34, pp. 17–26. https://doi.org/10.1016/j.pbi.2016.07.008

Sharma, U., Bhatt, J., Sharma, H.M., et al., Ultrastructure, adaptability, and alleviation mechanisms of photosynthetic apparatus in plants under waterlogging: A review, Photosynthetica, 2022, vol. 60, pp. 430–444. https://doi.org/10.32615/ps.2022.033

Shi, F., Pan, Z., Dai, P., et al., Effect of waterlogging stress on leaf anatomical structure and ultrastructure of Phoebe sheareri seedlings, Forests, 2023, vol. 14, no. 7, p. 1294. https://doi.org/10.3390/f14071294

Takahashi, S. and Badger, M.R., Photoprotection in plants: a new light on photosystem II damage, Trends Plant Sci., 2011, vol. 16, pp. 53–60. https://doi.org/10.1016/j.tplants.2010.10.001

Thalmann, M. and Santelia, D., Starch as a determinant of plant fitness under abiotic stress, New Phytol., 2017, vol. 214, no. 3, pp. 943–951. https://doi.org/10.1111/nph.14491

Todorova, D., Katerova, Z., Shopova, E., et al., The physiological responses of wheat and maize seedlings grown under water deficit are modulated by pre-application of auxin-type plant growth regulators, Plants, 2022, vol. 11, p. 3251. https://doi.org/10.3390/plants11233251

Topa, M.A. and Cheeseman, J.M., Carbon and phosphorus partitioning in Pinus serotina seedlings growing under hypoxic and low-phosphorus conditions, Tree Physiol., 1992, vol. 10, pp. 195–207.

Utrillas, M.J. and Alegre, L., Impact of water stress on leaf anatomy and ultrastructure in Cynodon dactylon (L.) Pers. under natural conditions, Int. J. Plant Sci., 1997, vol. 158, pp. 313–324.

Van Wijk, K.J. and Kessler, F., Plastoglobuli: plastid microcompartments with integrated functions in metabolism, plastid developmental transitions, and environmental adaptation, Ann. Rev. Plant Biol., 2017, vol. 68, pp. 253–389.

Vu, C.V. and Yelenosky, G., Photosnythetic responses of rough lemon and sour orange to soil flooding, chilling, and short-term temperature fluctuations during growth, Environ. Exp. Bot., 1992, vol. 32, pp. 471–477. https://doi.org/10.1016/0098-8472(92)90060-F

Wample, R.L. and Davis, R.W., Effect of flooding on starch accumulation in chloroplasts of sunflower (Helianthus annus L), Plant Physiol., 1983, vol. 73, pp. 195–198.

Yan, L., Guanghui, L., Xueming, H., and Xueni, Z., Complete chloroplast genome of a spring ephemeral plant Alyssum desertorum and its implications for the phylogenetic position of the tribe Alysseae within the Brassicaceae Nordic, J. Bot., 2017, vol. 35, pp. 644–652. https://doi.org/10.1111/njb.01531

Yoshioka-Nishimura, M., Close relationships between the PSII repair cycle and thylakoid membrane dynamics, Plant Cell Physiol., 2016, vol. 57, pp. 1115–1122. https://doi.org/10.1093/pcp/pcw050

Zhang, R.D., Zhou, Y.F., Yue, Z.X., et al., Changes in photosynthesis, chloroplast ultrastructure, and antioxidant metabolism in leaves of sorghum under waterlogging stress, Photosynthetica, 2019, vol. 57, pp. 1076–1083.

Zhou, J., Wan, S.W., Li, G., and Qin, P., et al., Ultrastructure changes of seedlings of Kosteletzkya virginica under waterlogging conditions, Biol. Plant., 2011, vol. 55, pp. 493–498. https://doi.org/10.1007/s10535-011-0115-6