TSitologiya i Genetika 2023, vol. 57, no. 1, 68-92
Cytology and Genetics 2023, vol. 57, no. 1, 55–75, doi: https://www.doi.org/https://doi.org/10.3103/S0095452723010048

Cellular mechanisms for the formation of plant adaptive responses to high temperatures

Kolupaev Yu.E., Yastreb T.O., Ryabchun N.I., Yemets А.I., Dmitriev A.P., Blume Ya.B.

  1. Yur’ev Plant Production Institute, National Academy of Agrarian Sciences of Ukraine, Heroiv Kharkova str., 142, Kharkiv, 61060, Ukraine
  2. State Biotechnological University, Alchevskikh str., 44, Kharkiv, 61002, Ukraine
  3. Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osypovskoho str., 2a, Kyiv, 04123, Ukraine
  4. Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Akademika Zabolotnogo str., 148, Kyiv, 03143 Ukraine

SUMMARY. Extreme temperatures are among the most dangerous environmental factors, the impact of which on plants has been increasing significantly in last few decades. The review analyses the latest information about the perception mechanisms of hyperthermia signal by plant cells. The emphasis is placed on the role of membrane fluidization, changes in calcium channels, and increased generation of reactive oxygen species in the perception of heat stress signal. The significance of gasotransmitters (NO and H2S) and their interaction with other me-diators in the transduction of hyperthermia signal into the genetic apparatus is discussed separately. The role of key transcription factors (HSF, MBF, NAC, and WRKY) in formation of plant adaptive responses to high temperatures is analysed. The present-day concepts on the mechanisms of activation and functioning of main stress-protective systems that provide plant resistance to hyperthermia (synthesis of heat shock proteins, antioxidant and osmoprotective systems) are summarized. Examples of genetic improvement of plants heat resistance by transformation of genes involved in the control of these systems are presented.


TSitologiya i Genetika
2023, vol. 57, no. 1, 68-92

Current Issue
Cytology and Genetics
2023, vol. 57, no. 1, 55–75,
doi: https://doi.org/10.3103/S0095452723010048

Full text and supplemented materials


Agrawal, D., Allakhverdiev, S.I., and Jajoo, A., Cyclic electron flow plays an important role in protection of spinach leaves under high temperature stress, Russ. J. Plant Physiol., 2016, vol. 63, no. 2, pp. 210–215. https://doi.org/10.1134/S1021443716020023

Aleksandrov, V.Ya. and Kislyuk, I.M., Cell response to heat shock: Physiological aspect, Tsitologiya, 1994, vol. 36, no. 1, pp. 5–59.

Ali, S., Rizwan, M., Arif, M.S., et al., Approaches in enhancing thermotolerance in plants: An updated review, J. Plant Growth Regul., 2020, vol. 39, pp. 456–480. https://doi.org/10.1007/s00344-019-09994-x

Ali, S., Anjum, M.A., Nawaz, A., et al., Hydrogen sulfide regulates temperature stress in plants, Singh, S., Singh, V.P., and Tripathi, D.K., Eds, in Hydrogen Sulfide in Plant Biology, Elsevier, 2021, pp. 1–24. https://doi.org/10.1016/B978-0-323-85862-5.00003-8


Alscher, R.G., Erturk, N., and Heath, L.S., Role of superoxide dismutases (SODs) in controlling oxidative stress in plants, J. Exp. Bot., 2002, vol. 53, no. 372, pp. 1331–1341. https://doi.org/10.1093/jexbot/53.372.1331

Ambrosone, A., Giacomo, M., Leone, A., et al., Identification of early induced genes upon water deficit in potato cell culture by cDNA-AFLP, J. Plant Res., 2013, vol. 126, pp. 169–178. https://doi.org/10.1007/s10265-012-0505-7

Arora, D. and Bhatla, S.C., Nitric oxide triggers a concentration-dependent differential modulation of superoxide dismutase (FeSOD and Cu/ZnSOD) activity in sunflower seedling roots and cotyledons as an early and long distance signaling response to NaCl stress, Plant Signal Behav., 2015, vol. 10, no. 10, p. e1071753. https://doi.org/10.1080/15592324.2015.1071753

Arora, D., Jain, P., Singh, N., et al., Mechanisms of nitric oxide crosstalk with reactive oxygen species scavenging enzymes during abiotic stress tolerance in plants, Free Radical Res., 2016, vol. 50, no. 3, pp. 291–303. https://doi.org/10.3109/10715762.2015.1118473

Asthir, B., Mechanisms of heat tolerance in crop plants, Bi-ol. Plant, 2015, vol. 59, no. 4, pp. 620–628. https://doi.org/10.1007/s10535-015-0539-5

Bae, M.S., Cho, E.J., Choi, E.-Y., and Park, O.K., Analysis of the Arabidopsis nuclear proteome and its response to cold stress, Plant J., 2003, vol. 36, no. 5, pp. 652–663. https://doi.org/10.1046/j.1365-313x.2003.01907.x

Banti, V., Maffessoni, F., Loreti, E., et al., Heat inducible transcription factor HsfA2 enhances anoxia tolerance in Arabidopsis, Plant Physiol., 2010, vol. 152, pp. 1471–1483. https://doi.org/10.1104/pp.109.149815

Batcho, A.A., Jabbar, B., Sarwar, M.B., et al., Transient expression analysis of Agave sisalana heat shock protein gene (AsHSP70) in model species (Nicotiana benthamiana) under heat stress, Biol. Bull., 2022 vol. 49, no. 3, pp. 160–168. https://doi.org/10.1134/S1062359022030037

Begara-Morales, J.C., Sánchez-Calvo, B., Chaki, M., et al., Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitrosylation, J. Exp. Bot., 2014, vol. 65, no. 2, pp. 527–538. https://doi.org/10.1093/jxb/ert396

Bernfur, K., Rutsdottir, G., and Emanuelsson, C., The chloroplast-localized small heat shock protein Hsp21 associates with the thylakoid membranes in heatstressed plants, Protein Sci., 2017, vol. 26, pp. 1773–1784. https://doi.org/10.1002/pro.3213

Bharti, K., Koskull-Döring, V.P., Bharti, S., et al., Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with the plant CREB binding protein ortholog HAC1, Plant Cell, 2004, vol. 16, no. 6, pp. 1521–1535. https://doi.org/10.1105/tpc.019927

Blume, Ya.B., Lytvin, D.I., Krasylenko, Yu.A., et al., Nitrotyrosination as a posttranslational modification of plant α-tubulin, Reports Natl. Acad. Sci. Ukr., 2011, no. 7, pp. 161–166.

Bukau, B., Weissman, J., and Horwich, A., Molecular chaperones and protein quality control, Cell, 2006, vol. 125, pp. 443–451. https://doi.org/10.1016/j.cell.2006.04.014

Chen, X., Chen, Q., Zhang, X., et al., Hydrogen sulfide mediates nicotine biosynthesis in tobacco (Nicotiana tabacum) under high temperature conditions, Plant Physiol. Biochem., 2016, vol. 104, pp. 174–179. https://doi.org/10.1016/j.plaphy.2016.02.033

Cheng, T., Shi, J., Dong, Y., et al., Hydrogen sulfide enhances poplar tolerance to high-temperature stress by increasing S-nitrosoglutathione reductase (GSNOR) activity and reducing reactive oxygen/nitrogen damage, Plant Growth Regul., 2018, vol. 84, pp. 11–23. https://doi.org/10.1007/s10725-017-0316-x

Chiang, C.M., Chen, S.P., Chen, L.F.O., et al., Expression of the broccoli catalase gene (BoCAT) enhances heat tolerance in transgenic Arabidopsis, J. Plant Biochem. Biotechnol., 2014, vol. 23, pp. 266–277. https://doi.org/10.1007/s13562-013-0210-1

Chiang, C.M., Chien, H.L., Chen, L.F.O., et al., Overexpression of the genes coding ascorbate peroxidase from Brassica campestris enhances heat tolerance in transgenic Arabidopsis thaliana, Biol. Plant, 2015, vol. 59, no. 2, pp. 305–315. https://doi.org/10.1007/s10535-015-0489-y

Cho, E.K. and Hong, C.B., Over-expression of tobacco NtHSP70-1 contributes to drought-stress tolerance in plants, Plant Cell Rep., 2006, vol. 25, pp. 349–358. https://doi.org/10.1007/s00299-005-0093-2

Choudhury, F.K., Rivero, R.M., Blumwald, E., and Mittler, R., Reactive oxygen species, abiotic stress and stress combination, Plant J., 2017, vol. 90, pp. 856–867. https://doi.org/10.1111/tpj.13299

Christou, A., Filippou, P., Manganaris, G., and Fotopoulos, V., Sodium hydrosulfide induces systemic thermotolerance to strawberry plants through transcriptional regulation of heat shock proteins and aquaporin, BMC Plant Biol., 2014, vol. 14, p. 42. https://doi.org/10.1186/1471-2229-14-42

Conte, M.L. and Carroll, K.S., The redox biochemistry of protein sulfenylation and sulfinylation, J. Biol. Chem., 2013, vol. 288, no. 37, pp. 26480–26488. https://doi.org/10.1074/jbc.R113.467738

Corpas, F.J. and Barroso, J.B., Nitro-oxidative stress vs oxidative or nitrosative stress in higher plants, New Phytol., 2013, vol. 199, pp. 633–635. https://doi.org/10.1111/nph.12380

Corpas, F.J. and Barroso, J.B., Nitric oxide synthase-like activity in higher plants, Nitric Oxide, 2017, vol. 68, pp. 5–6. https://doi.org/10.1016/j.niox.2016.10.009

Corpas, F.J., Palma, J.M., Sandalio, L.M., et al., Peroxisomal xanthine oxidoreductase: Characterization of the enzyme from pea (Pisum sativum L.) leaves, J. Plant Physiol., 2008, vol. 165, no. 13, pp. 1319–1330. https://doi.org/10.1016/j.jplph.2008.04.004

Corpas, F.J., González-Gordo, S., Canas, A., and Palma, J.M., Nitric oxide and hydrogen sulfide in plants: which is first?, J. Exp. Bot., 2019, vol. 70, no. 17, pp. 4391–4404. https://doi.org/10.1093/jxb/erz031

Costa, A., Navazio, L., and Szabo, I., The contribution of organelles to plant intracellular calcium signaling, J. Exp. Bot., 2018, vol. 69, no. 17, pp. 4175–4193. https://doi.org/10.1093/jxb/ery185

Cuevasanata, E., Lange, M., Bonanata, J., et al., Reaction of hydrogen sulphide with disulfide and sulfenic acid to form the strongly nucleophilic persulfide, J. Biol. Chem., 2015, vol. 290, no. 45, pp. 26866–26880. https://doi.org/10.1074/jbc.M115.672816

Das, K. and Roychoudhury, A., Reactive oxygen species (ROS) and response of antioxidants as ROSscavengers during environmental stress in plants, Front. Environ. Sci., 2014, vol. 2, p. 53. https://doi.org/10.3389/fenvs.2014.00053

Dash, S. and Mohanty, N., Response of seedlings to heat stress in cultivars of wheat: Growth temperature-dependent differential modulation of photosystem 1 and 2 activity and foliar antioxidant defense capacity, J. Plant Physiol., 2002, vol. 159, no. 1, pp. 49–59. https://doi.org/10.1078/0176-1617-00594

Datir, S.S., Transcriptomics to dissect plant responses to heat stress, in Heat Stress Tolerance in Plants: Physiological, Molecular and Genetic Perspectives, Wani, S.H. and Kumar, V., Eds., John Wiley & Sons, 2020, pp. 117–140. https://doi.org/10.1002/9781119432401.ch6

Devireddy, A.R., Tschaplinski, T.J., Tuskan, G.A., et al., Role of reactive oxygen species and hormones in plant responses to temperature changes, Int. J. Mol. Sci., 2021, vol. 22, p. 8843. https://doi.org/10.3390/ijms22168843

Dickinson, P.J., Kumar, M., Martinho, C., et al., Chloroplast signaling gates thermotolerance in Arabidopsis, Cell Rep., 2018, vol. 22, p. 1657–1665. https://doi.org/10. 1016/j.celrep.2018.01.054

Dietz, K.J., Peroxiredoxins in plants and cyanobacteria, Antioxid. Redox Signaling, 2011, vol. 15, no. 4, pp. 1129–1159. https://doi.org/10.1089/ars.2010.3657

Ding, X., Jiang, Y., He, L., et al., Exogenous glutathione improves high root-zone temperature tolerance by modulating photosynthesis, antioxidant and osmolytes systems in cucumber seedlings, Sci. Rep., 2016, vol. 18, no. 6, p. 35424. https://doi.org/10.1038/srep35424

El-Esawi, M.A., Al-Ghamdi, A.A., et al., Overexpression of AtWRKY30 transcription factor enhances heat and drought stress tolerance in wheat (Triticum aestivum L.), Genes, 2019, vol. 10, no. 2, p. 163. https://doi.org/10.3390/genes10020163

Finka, A. and Goloubinoff, P., The CNGCb and CNGCd genes from Physcomitrella patens moss encode for thermosensory calcium channels responding to fluidity changes in the plasma membrane, Cell Stress Chaperones, 2014, vol. 19, no. 1, pp. 83–90. https://doi.org/10.1007/s12192-013-0436-9

Fragkostefanakis, S., Röth, S., Schleiff, E., and Klaus-Dieter, S., Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks, Plant Cell Environ., 2015, vol. 38, pp. 1881–1895. https://doi.org/10.1111/pce.12396

Gao, F., Han, X., Wu, J., et al., A heat-activated calcium permeable channel – Arabidopsis cyclic nucleotide-gated ion channel 6 – is involved in heat shock responses, Plant J., 2012, vol. 70, no. 6, pp. 1056–1069. https://doi.org/10.1111/j.1365-313X.2012.04969.x

Gao, C.H., Sun, M., Anwar, S., et al., Response of physiological characteristics and grain yield of winter wheat varieties to long-term heat stress at anthesis, Photosynthetica, 2021, vol. 59, no. 4, pp. 640–651. https://doi.org/10.32615/ps.2021.060

García-Caparrós, P., De Filippis, L., Gul, A., et al., Oxidative stress and antioxidant metabolism under adverse environmental conditions: a review, Bot. Rev., 2021, vol. 87, no. 4, pp. 421–466. https://doi.org/10.1007/s12229-020-09231-1

Gill, S.S. and Tuteja, N., Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Plant Physiol. Biochem., 2010, vol. 48, no. 12, pp. 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016

Gould, K.S., Lamotte, O., Klinguer, A., et al., Nitric oxide production in tobacco leaf cells: a generalized stress response?, Plant Cell Environ., 2003, vol. 26, pp. 1851–1862. https://doi.org/10.1046/j.1365-3040.2003.01101.x

Gruhlke, M.C., Reactive sulfur species a new player in plant physiology?, in Reactive Oxygen, Nitrogen and Sulfur Species in Plants: Production, Metabolism, Signaling and Defense Mechanisms, Hasanuzzaman, M., Fotopoulos, V., Nahar, K., and Fujita, M., Eds., John Wiley & Sons, 2019, p. 715–728, vol. 2. https://doi.org/10.1002/9781119468677.ch31

Guo, W., Zhang, J., Zhang, N., et al., The wheat NAC transcription factor TaNAC2L is regulated at the transcriptional and post-translational levels and promotes heat stress tolerance in transgenic Arabidopsis, PLoS One, 2015, vol. 10, no. 8, p. e0135667. https://doi.org/10.1371/journal.pone.0135667

Guo, H., Xiao, T., Zhou, H., et al., Hydrogen sulfide: a versatile regulator of environmental stress in plants, Acta Physiol. Plant, 2016, vol. 38, p. 16. https://doi.org/10.1007/s11738-015-2038-x

Guo, Z., Liang, Y., Yan, J., et al., Physiological response and transcription profiling analysis reveals the role of H2S in alleviating excess nitrate stress tolerance in tomato roots, Plant Physiol. Biochem., 2018, vol. 124, pp. 59–69. https://doi.org/10.1016/j.plaphy.2018.01.006

Gupta, K.J. and Kaiser, W.M., Production and scavenging of nitric oxide by barley root mitochondria, Plant Cell Physiol., 2010, vol. 51, no. 4, pp. 576–584. https://doi.org/10.1093/pcp/pcq022

Gupta, N.K., Agarwal, S., Agarwal, V.P., et al., Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings, Acta Physiol. Plant, 2013, vol. 35, p. 1837–1842. https://doi.org/10.1007/s11738-013-1221-1

Gupta, K.J., Kolbert, Z., Durner, J., et al., Regulating the regulator: nitric oxide control of post-translational modifications, New Phytol., 2020, vol. 227, pp. 1319–1325. https://doi.org/10.1111/nph.16622

Halliwell, B. and Gutteridge, J.M., Free Radicals in Biology and Medicine, Oxford Univ., 2015.


Hameed, A., Goher, M., and Iqbal, N., Heat stress-induced cell death, changes in antioxidants, lipid peroxidation, and protease activity in wheat leaves, J. Plant Growth Regul., 2012, vol. 31, pp. 283–291. https://doi.org/10.1007/s00344-011-9238-4

Han, Y., Fan, S., Zhang, Q., and Wang, Y., Effect of heat stress on the MDA, proline and soluble sugar content in leaf lettuce seedlings, Agricult. Sci., 2013, vol. 4, no. 5B, pp. 112–115. https://doi.org/10.4236/as.2013.45B021

Hancock, J.T., Hydrogen sulfide and environmental stresses, Environ. Exp. Bot., 2019, vol. 61, no. 9, pp. 50–56. https://doi.org/10.1016/j.envexpbot.2018.08.034

Hancock, J.T. and Whiteman, M., Hydrogen sulfide and cell signaling: Team player or referee?, Plant Physiol. Biochem., 2014, vol. 78, pp. 37–42. https://doi.org/10.1016/j.plaphy.2014.02.012

Harsh, A., Sharma, Y.K., Joshi, U., et al., Effect of short-term heat stress on total sugars, proline and some antioxidant enzymes in moth bean (Vigna aconitifolia), Ann. Agricult. Sci., 2016, vol. 61, no. 1, pp. 57–64. https://doi.org/10.1016/j.aoas.2016.02.001

Hasanuzzaman, M., Nahar, K., Alam, M.M., et al., Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants, Int. J. Mol. Sci., 2013, vol. 14, pp. 9643–9684. https://doi.org/10.3390/ijms14059643

Hasanuzzaman, M., Bhuyan, M.H.M., Zulfiqar, F., et al., Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator, Antioxidants, 2020, vol. 9, no. 8, p. 681. https://doi.org/10.3390/antiox9080681

Havva, E.N., Kolupaev, Yu.E., Shkliarevskyi, M.A., et al., Hydrogen sulfide participation in the formation of wheat seedlings’ heat resistance under the action of hardening temperature, Cytol. Genet., 2022, vol. 56, no. 3, pp. 218–225. https://doi.org/10.3103/S0095452722030045

He, G.H., Xu, J.Y., Wang, Y.X., et al., Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis, BMC Plant Biol., 2016, vol. 16, p. 116. https://doi.org/10.1186/s12870-016-0806-4

Hu, X., Liu, R., Li, Y., et al., Heat shock protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined drought and heat stress, Plant Growth Regul., 2010, vol. 60, pp. 225–235. https://doi.org/10.1007/s10725-009-9436-2

Huang, Y.W., Zhou, Z.Q., Yang, H.X., et al., Glucose application protects chloroplast ultrastructure in heat stressed cucumber leaves through modifying antioxidant enzyme activity, Biol. Plant, 2015, vol. 59, pp. 131–138. https://doi.org/10.1007/s10535-014-0470-1

Ida, T., Sawa, T., Ihara, H., et al., Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling, Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, no. 21, pp. 7606–7611. https://doi.org/10.1073/pnas.1321232111

Iqbal, M., Hussain, I., Liaqat, H., et al., Exogenously applied selenium reduces oxidative stress and induces heat tolerance in spring wheat, Plant Physiol. Biochem., 2015, vol. 94, pp. 95–103. https://doi.org/10.1016/j.plaphy.2015.05.012

Iqbal, N., Fatma, M., Khan, N.A., and Umar, S., Regulatory role of proline in heat stress tolerance: modulation by salicylic acid, in Plant Signaling Molecules, Khan, M.I.R., Reddy, P.S., Ferrante, A., and Khan, N.A., Eds., Elsevier, 2019, pp. 437–448. https://doi.org/10.1016/B978-0-12-816451-8.00027-7

Ischiropoulos, H., Biological selectivity and functional aspects of protein tyrosine nitration, Biochem. Biophys. Res. Commun., 2003, vol. 305, pp. 776–783. https://doi.org/10.1016/s0006-291x(03)00814-3

Jeandroz, S., Wipf, D., Stuehr, D.J., et al., Occurrence, structure, and evolution of nitric oxide synthase-like proteins in the plant kingdom, Sci. Signal., 2016, vol. 9, no. 417, p. re2. https://doi.org/10.1126/scisignal.aad4403

Ju, A. and Ma, H., Evaluation of seedling proline content of wheat genotypes in relation to heat tolerance, Bangladesh J. Bot., 2011, vol. 40, no. 1, pp. 17–22.

Jung, J., Domijan, M., Klose, C., et al., Phytochromes function as thermosensors in Arabidopsis, Science, 2016, vol. 354, no. 6314, pp. 886–889. https://doi.org/10.1126/science.aaf6005

Karpets, Yu.V., Kolupaev, Yu.E., and Vayner, A.A., Functional interaction between nitric oxide and hydrogen peroxide during formation of wheat seedling induced heat resistance, Russ. J. Plant Physiol., 2015a, vol. 62, no. 1, pp. 65–70. https://doi.org/10.1134/S1021443714060090

Karpets, Yu.V., Kolupaev, Yu.E., and Yastreb, T.O., Signal mediators at induction of heat resistance of wheat plantlets by short-term heating, Ukr. Biochem. J., 2015b, vol. 88, no. 6, pp. 104–112. https://doi.org/10.15407/ubj87.06.104

Karpets, Yu.V., Kolupaev, Yu.E., Yastreb, T.O., and Oboznyi, A.I., Effects of NO-Status modification, heat hardening, and hydrogen peroxide on the activity of antioxidant enzymes in wheat seedlings, Russ. J. Plant Physiol., 2015c, vol. 62, no. 3, pp. 292–298. https://doi.org/10.1134/S1021443715030097

Karpets, Yu.V., Kolupaev, Yu.E., Lugovaya, A.A., et al., Functional interaction of ROS and nitric oxide during induction of heat resistance of wheat seedlings by hydrogen sulfide donor, Russ. J. Plant Physiol., 2020, vol. 67, no. 4, pp. 653–660. https://doi.org/10.1134/S1021443720030140

Kemp, M., Go, Y.M., and Jones, D.P., Nonequilibrium thermodynamics of thiol/disulfide redox systems: A perspective on redox systems biology, Free Radical Biol. Med., 2008, vol. 44, no. 6, pp. 921–937. https://doi.org/10.1016/j.freeradbiomed.2007.11.008

Kimura, S., Kaya, H., Kawarazaki, T., et al., Protein phosphorylation is a prerequisite for the Ca2+-dependent activation of Arabidopsis NADPH oxidases and may function as a trigger for the positive feedback regulation of Ca2+ and reactive oxygen species, Biochim. Biophys. Acta, 2012, vol. 1823, pp. 398–405. https://doi.org/10.1016/j.bbamcr.2011.09.011

Kolbert, Z., Barroso, J.B., Brouquisse, R., et al., A forty year journey: The generation and roles of NO in plants, Nitric Oxide, 2019, vol. 93, pp. 53–70. https://doi.org/10.1016/j.niox.2019.09.006

Kolupaev, Yu.E., Oboznyi, A.I., and Shvidenko, N.V., Role of hydrogen peroxide in generation of a signal inducing heat tolerance of wheat seedlings, Russ. J. Plant Physiol., 2013, vol. 60, no. 2, pp. 227–234. https://doi.org/10.1134/S102144371302012X

Kolupaev, Yu.E., Firsova, E.N., Yastreb, T.O., and Lugovaya, A.A., The participation of calcium ions and reactive oxygen species in the induction of antioxidant enzymes and heat resistance in plant cells by hydrogen sulfide donor, Appl. Biochem. Microbiol., 2017, vol. 53, no. 5, pp. 573–579. https://doi.org/10.1134/S0003683817050088

Kolupaev, Yu.E., Karpets, Yu.V., and Kabashnikova, L.F., Antioxidative system of plants: Cellular compartmentalization, protective and signaling functions, mechanisms of regulation (Review), Appl. Biochem. Microbiol., 2019, vol. 55, no. 5, pp. 441–459. https://doi.org/10.1134/S0003683819050089

Kolupaev, Yu.E., Kokorev, A.I., and Dmitriev, A.P., Polyamines: Involvement in cellular signaling and plant adaptation to the effect of abiotic stressors, Cytol. Genet., 2022, vol. 56, no. 2, pp. 148–163. https://doi.org/10.3103/S0095452722020062

König, J., Muthuramalingam, M., and Dietz, K.J., Mechanisms and dynamics in the thiol/disulfide redox regulatory network: transmitters, sensors and targets, Curr. Opin. Plant Biol., 2012, vol. 15, no. 3, pp. 261–268. https://doi.org/10.1016/j.pbi.2011.12.002

Konrad, K.R., Maierhofer, T., and Hedrich, R., Spatio-temporal aspects of Ca2+-signalling: lessons from guard cells and pollen tubes, J. Exp. Bot., 2018, vol. 69, no 17, pp. 4195–4214. https://doi.org/10.1093/jxb/ery154

Kozeko, L.Y., The role of HSP90 chaperones in stability and plasticity of ontogenesis of plants under normal and stressful conditions (Arabidopsis thaliana), Cytol. Genet., 2019, vol. 53, no. 2, pp. 143–161. https://doi.org/10.3103/S0095452719020063

Kozeko, L.Y. and Rakhmetov, D.B., Variation in dynamics of the heat shock proteins HSP70 synthesis in Malva sylvestris and M. pulchella (Malvaceae) in connection with tolerance to high temperature, flooding and drought, Ukr. Bot. J., 2016, vol. 73, no. 2, pp. 194–203. https://doi.org/10.15407/ukrbotj73.02.194

Krasylenko, Y.A., Yemets, A.I., and Blume, Y.B., Nitric oxide synthase inhibitor L-NAME affects Arabidopsis root growth, morphology, and microtubule organization, Cell Biol. Int., 2019, vol. 43, no. 9, pp. 1049–1055. https://doi.org/10.1002/cbin.10880

Kreslavski, V.D., Los, D.A., Allakhverdiev, S.I., and Kuznetsov, V.V., Signaling role of reactive oxygen species in plants under stress, Russ. J. Plant Physiol., 2012, vol. 59, no. 2, pp. 141–154. https://doi.org/10.1134/S1021443712020057

Krishna, P. and Gloor, G., The Hsp90 family of proteins in Arabidopsis thaliana, Cell Stress Chaperones, 2001, vol. 6, no. 3, pp. 238–246. https://doi.org/10.1379/1466-1268(2001)006<0238:thfopi>2.0.co;2

Kumar, R.R., Goswami, S., Sharma, S.K., et al., Protection against heat stress in wheat involves change in cell membrane stability, antioxidant enzymes, osmolyte, H2O2 and transcript of heat shock protein, Int. J. Plant Physiol. Biochem., 2012, vol. 4, no. 4, pp. 83–91. https://doi.org/https://doi.org/10.5897/IJPPB12.008

Kumar, R.R. and Rai, R.D., Can wheat beat the heat: understanding the mechanism of thermotolerance in wheat (Triticum aestivum L.). A Review, Cereal Res. Commun., 2014, vol. 42, no. 1, pp. 1–18. https://doi.org/10.1556/CRC.42.2014.1.1

Kvasko, A.Yu., Isayenkov, S.V., Krasnoperova, E.E., et al., Genetic transformation of Nicotiana tabacum with yeast genes of trehalose biosynthesis TPSI and TPS2, Visnyk Ukr. Tovarystva Genet. Selektsioneriv, 2019, vol. 18, no. 2, pp. 8–16. https://doi.org/10.7124/visnyk.utgis.17.2.1215

Kvasko, A.Y., Isayenkov, S.V., Dmytruk, K.V., et al., Obtaining wheat (Triticum aestivum L.) lines with yeast genes for trehalose biosynthesis, Cytol. Genet., 2020, vol. 54, no. 4, pp. 283–292. https://doi.org/10.3103/S0095452720040088

Lee, J.H., Hubel, A., and Schoffl, F., Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis, Plant J., 1995, vol. 8, pp. 603–612. https://doi.org/10.1046/j.1365-313X.1995.8040603.x

Li, Z.G., Hydrogen sulfide: A multifunctional gaseous molecule in plants, Russ. J. Plant Physiol., 2013, vol. 60, no. 6, pp. 733–740. https://doi.org/10.1134/S1021443713060058

Li, Z.G., Mechanisms of plant adaptation and tolerance to heat stress, in Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II, Hasanuzzaman, M., Ed., Singapore: Springer Nature, 2020, pp. 39–60. https://doi.org/10.1007/978-981-15-2172-0_3

Li, Q. and Lancaster, J.R., Chemical foundations of hydrogen sulfide biology, Nitric Oxide, 2013, vol. 35, pp. 21–34. https://doi.org/10.1016/j.niox.2013.07.001

Li, Z.G., Gong, M., Xie, H., et al., Hydrogen sulfide donor sodium hydrosulfideinduced heat tolerance in tobacco (Nicotiana tabacum L) suspension cultured cells and involvement of Ca2+ and calmodulin, Plant Sci., 2012, vols. 185/186, pp. 185–189. https://doi.org/10.1016/j.plantsci.2011.10.006

Li, Z.G., Long, W.B., Yang, S.Z., et al., Endogenous hydrogen sulfide regulated by calcium is involved in thermotolerance in tobacco Nicotiana tabacum L. suspension cell cultures, Acta Physiol. Plant, 2015, vol. 37, p. 219. https://doi.org/10.1007/s11738-015-1971-z

Li, B., Gao, K., Ren, H., and Tang, W., Molecular mechanisms governing plant responses to high temperatures, J. Integr. Plant Biol., 2018, vol. 60, no. 9, pp. 757–779. https://doi.org/10.1111/jipb.12701

Liang, X., Zhang, L., Natarajan, S.K., and Becker, D.F., Proline mechanisms of stress survival, Antioxid. Redox Signal, 2013, vol. 19, no. 9, pp. 998–1011. https://doi.org/10. 1089/ars.2012.5074

Liao, C., Zheng, Y., and Guo, Y., MYB30 transcription factor regulates oxidative and heat stress responses through ANNEXIN-mediated cytosolic calcium signaling in Arabidopsis, New Phytol., 2017, vol. 216, pp. 163–177. https://doi.org/10.1111/nph.14679

Lipka, E. and Müller, S., Nitrosative stress triggers microtubule reorganization in Arabidopsis thaliana, J. Exp. Bot., 2014, vol. 65, no. 15, pp. 4177–4189. https://doi.org/10.1093/jxb/eru194

Lisjak, M., Teklic, T., Wilson, I.D., et al., Hydrogen sulfide: environmental factor or signalling molecule?, Plant Cell Environ., 2013, vol. 36, no. 9, pp. 1607–1616. https://doi.org/10.1111/pce.12073

Liu, H.C. and Charng, Y.Y., Common and distinct functions of Arabidopsis Class A1 and A2 heat shock factors in diverse abiotic stress responses and development, Plant Physiol., 2013, vol. 163, pp. 276–290. https://doi.org/10.1104/pp.113.221168

Liu, H.T., Gao, F., Li, G.L., et al., The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thaliana, Plant J., 2008, vol. 55, no. 5, pp. 760–773. https://doi.org/10.1111/j.1365-313X.2008.03544.x

Lohmann, C., Eggers-Schumacher, G., Wunderlich, M., and Schöffl, F., Two different heat shock transcription factors regulate immediate early expression of stress genes in Arabidopsis, Mol. Genet. Genom., 2004, vol. 271, pp. 11–21. https://doi.org/10.1007/s00438-003-0954-8

Lund, P.A., Molecular Chaperons in the Cell, Oxford: Oxford University Press, 2001.

Luo, Y., Wang, W., Fan, Y.Z., et al., Exogenouslysupplied trehalose provides better protection for D1 protein in winter wheat under heat stress, Russ. J. Plant Physiol., 2001, vol. 65, no. 1, pp. 115–122. https://doi.org/10.1134/S1021443718010168

Manna, M., Thakur, T., Chirom, O., et al., Transcription factors as key molecular target to strengthen the drought stress tolerance in plants, Physiol. Plant, 2021, vol. 172, no. 2, pp. 847–868. https://doi.org/10.1111/ppl.13268

Mishkind, M., Vermeer, J.E., Darwish, E., and Munnik, T., Heat stress activates phospholipase D and triggers PIP2 accumulation at the plasma membrane and nucleus, Plant J., 2009, vol. 60, no. 1, pp. 10–21. https://doi.org/10.1111/j.1365-313X.2009.03933.x

Mishra, V., Singh, P., Tripathi, D.K., et al., Nitric oxide and hydrogen sulfide: an indispensable combination for plant functioning, Trends Plant Sci., 2021, vol. 26, no. 12, pp. 1270–1285. https://doi.org/10.1016/j.tplants.2021.07.016

Mogk, A., Schlieker, C., Friedrich, K.L., et al., Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK, J. Biol. Chem., 2003, vol. 278, pp. 31033–31042. https://doi.org/10.1074/jbc.M303587200

Mohapatra, T., Foreword, in Heat Stress Tolerance in Plants Physiological, Molecular and Genetic Perspectives, Wani, S.H. and Kumar, V., Eds., Wiley, 2019.

Moustaka, J., Ouzounidou, G., Sperdouli, I., and Moustakas, M., Photosystem II is more sensitive than photosystem I to Al3+ induced phytotoxicity, Materials, 2018, vol. 11, no. 9, p. 1772. https://doi.org/10.3390/ma11091772

Noctor, G., Mhamdi, A., and Foyer, C.H., The roles of reactive oxygen metabolism in drought: not so cut and dried, Plant Physiol., 2014, vol. 164, no. 4, pp. 1636–1648. https://doi.org/10.1104/pp.113.233478

Oda, T., Hashimoto, H., Kuwabara, N., et al., Structure of the N-terminal regulatory domain of a plant NADPH oxidase and its functional implications, J. Biol. Chem., 2010, vol. 285, no. 2, pp. 1435–1445. https://doi.org/10. 1074/jbc.M109.058909

Parankusam, S., Adimulam, S.S., Bhatnagar-Mathur, P., and Sharma, K.K., Nitric oxide (NO) in plant heat stress tolerance: current knowledge and perspectives, Front. Plant Sci., 2017, vol. 8, p. 1582. https://doi.org/10.3389/fpls.2017.01582

Peteranderl, R., Rabenstein, M., Shin, Y.K., et al., Biochemical and biophysical characterization of the trimerization domain from the heat shock transcription factor, Biochemistry, vol. 38, no. 12, pp. 3559–3569. https://doi.org/10.1021/bi981774j

Plieth, C. and Vollbehr, S., Calcium promotes activity and confers heat stability on plant peroxidases, Plant Signal Behav., 2012, vol. 7, no. 6, pp. 650–660. https://doi.org/10.4161/psb20065

Plokhovska, S.H., Krasylenko, Y.A., and Yemets, A.I., Nitric oxide modulates actin filament organization in Arabidopsis thaliana primary root cells at low temperatures, Cell Biol. Int., 2019, vol. 43, no. 9, pp. 1020–1030. https://doi.org/10.1002/cbin.10931

Plokhovska, S.H., Yemets, À.I., and Blume, Ya.B., Involvement of nitric oxide in the response of plantcells microtubules to the action of high temperature, Rep. Nat. Acad. Sci. Ukr., 2020, vol. 8, pp. 66–72. https://doi.org/10.15407/dopovidi2020.08.066

Pradedova, E.V., Nimaeva, O.D., and Salyaev, R.K., Redox processes in biological systems, Russ. J. Plant Physiol., 2017, vol. 64, no. 6, pp. 822–832. https://doi.org/10.1134/S1021443717050107

Pulido, P., Domínguez, F., and Cejudo, F.J., A hydrogen peroxide detoxification system in the nucleus of wheat seed cells: protection or signaling role?, Plant Signal Behav., 2009, vol. 4, no. 1, pp. 23–25. https://doi.org/10.4161/psb.4.1.7221

Qin, D., Wang, F., Geng, X., et al., Overexpression of heat stress-responsive TaMBF1c, a wheat (Triticum aestivum L.) Multiprotein Bridging Factor, confers heat tolerance in both yeast and rice, Plant Mol. Biol., 2015, vol. 87, nos. 1–2, pp. 31–45. https://doi.org/10.1007/s11103-014-0259-9

Ramani, H.R. and Mandavia, M.K., Effect of heat stress on enzymes and isoenzyms of wheat genotypes at tillering and grain filling stages, J. Cell Tissue Res., 2015, vol. 15, no. 1, pp. 4861–4866.

Romero, L.C., García, I., and Gotor, C., L-cysteine desulfhydrase 1 modulates the generation of the signaling molecule sulfide in plant cytosol, Plant Signal Behav., 2013, vol. 8, no. 5, pp. 4621–4634. https://doi.org/10.4161/psb.24007

Saha, J., Brauer, E.K., Sengupta, A., et al., Polyamines as redox homeostasis regulators during salt stress in plants, Front. Environ. Sci., 2015, vol. 3, p. 21. https://doi.org/10.3389/fenvs.2015.00021

Saidi, Y., Finka, A., Muriset, M., et al., The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane, Plant Cell, 2009, vol. 21, no. 9, pp. 2829–2843. https://doi.org/10.1105/tpc.108.065318

Sairam, R.K., Srivastava, G.C., and Saxena D.C., Increased antioxidant activity under elevated temperatures: a mechanism of heat stress tolerance in wheat genotypes, Biol. Plant, 2000, vol. 43, pp. 245–251. https://doi.org/10.1023/A:1002756311146

Sajid, M., Rashid, B., Ali, Q., and Husnain, T., Mechanisms of heat sensing and responses in plants. It is not all about Ca2+ ions, Biol. Plant, 2018, vol. 62, pp. 409–420. https://doi.org/10.1007/s10535-018-0795-2

Sánchez-Vicente, I., Fernández-Espinosa, M.G., and Lorenzo, O., Nitric oxide molecular targets: reprogramming plant development upon stress, J. Exp. Bot., 2019, vol. 70, no. 17, pp. 4441–4460. https://doi.org/10.1093/jxb/erz339

Singh, S., Kumar, V., Kapoor, D., et al., Revealing on hydrogen sulfide and nitric oxide signals co-ordination for plant growth under stress conditions, Physiol. Plant, 2020, vol. 168, no. 2, pp. 301–317. https://doi.org/10. 1111/ppl.13002

Song, L., Zhao, H., and Hou, M., Involvement of nitric oxide in acquired thermotolerance of rice seedlings, Russ. J. Plant Physiol., 2013, vol. 60, no. 6, pp. 785–790. https://doi.org/10.1134/S1021443713060149

Sun, W., Van Montagu, M., and Verbruggen, N., Small heat shock proteins and stress tolerance in plants, Biochim. Biophys. Acta, 2002, vol. 1577, pp. 1–9. https://doi.org/10.1016/S0167-4781(02)00417-7

Sung, D.Y., Kaplan, F., and Guy, C.L., Plant Hsp70 molecular chaperones: Protein structure, gene family, expression and function, Physiol. Plant, 2001, vol. 113, pp. 443–451. https://doi.org/10.1034/J.1399-3054.2001.1130402.X

Suzuki, N., Koussevitzky, S., Mittler, R., and Miller, G., ROS and redox signalling in the response of plants to abiotic stress, Plant Cell Environ., 2012, vol. 35, no. 2, pp. 259–270. https://doi.org/10.1111/j.1365-3040.2011.02336

Swindell, W.R., Huebner, M., and Weber, A.P., Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways, BMC Genomics, 2007, vol. 8, p. 125. https://doi.org/10.1186/1471-2164-8-125

Tarkowski, Ł.P. and Vanden, E.W., Cold tolerance triggered by soluble sugars: a multifaceted countermeasure, Front Plant Sci., 2015, vol. 6, p. 203. https://doi.org/10. 3389/fpls.2015.00203

Thakur, M. and Anand, A., Hydrogen sulfide: An emerging signaling molecule regulating drought stress response in plants, Physiol. Plant, 2021, vol. 172, no. 2, pp. 1227–1243. https://doi.org/10.1111/ppl.13432

Tian, S., Wang, X., Li, P., Wang, H., et al., Plant aquaporin AtPIP1;4 links apoplastic H2O2 induction to disease immunity pathways, Plant Physiol., 2016, vol. 171, pp. 1635–1650. https://doi.org/10.1104/pp.15.01237

Verma, S., Kumar, N., Verma, A., et al., Novel approaches to mitigate heat stress impacts on crop growth and development, Plant Physiol. Rep., 2020, vol. 25, pp. 627–644. https://doi.org/10.1007/s40502-020-00550-4

Volkov, R.A., Panchuk, I.I., Mullineaux, P.M., and Schoffl, F., Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis, Plant Mol. Biol., 2006, vol. 61, pp. 733–746. https://doi.org/10.1007/s11103-006-0045-4

Wahid, A., Gelani, S., Ashraf, M., and Foolad, M.R., Heat tolerance in plants: an overview, Environ. Exp. Bot., 2007, vol. 61, no. 3, pp. 199–223. https://doi.org/10.1016/j.envexpbot.2007.05.011

Wang, X., Yan, B., Shi, M., et al., Overexpression of a Brassica campestris HSP70 in tobacco confers enhanced tolerance to heat stress, Protoplasma, 2016, vol. 253, no. 3, pp. 637–645. https://doi.org/10.1007/s00709-015-0867-5

Wang, J., Lv, J., Liu, Z., et al., Integration of transcriptomics and metabolomics for pepper (Capsicum annuum L.) in response to heat stress, Int. J. Mol. Sci., 2019, vol. 20, p. 5042. https://doi.org/10.3390/ijms20205042

Waters, R.E., Nguyen, L.S., Eskandar, R., et al., The recent evolution of a pseudogene: diversity and divergence of a mitochondria-localized small heat shock protein in Arabidopsis thaliana, Genome, 2008, vol. 51, no. 3, pp. 177–186. https://doi.org/10.1139/G07-114

Waters, R.E., The evolution, structure and expression of the plant sHSPs, J. Exp. Bot., 2012, vol. 64, no. 2, pp. 391–403. https://doi.org/10.1093/jxb/ers355

Wei, X.R., Ling, W., Ma, Y.W., et al., Genome-wide analysis of the trehalose-6-phosphate synthase gene family in rose (Rosa chinensis) and differential expression under heat stress, Horticulturae, 2022, vol. 8, p. 429. https://doi.org/10.3390/horticulturae8050429

Whiteman, M., Li, L., Kostetski, I., et al., Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide, Biochem. Biophys. Res. Commun., 2006, vol. 343, no. 1, pp. 303–310. https://doi.org/10.1016/j.bbrc.2006.02.154

Wong, H.L., Pinontoan, R., Hayashi, K., et al., Regulation of rice NADPH-oxidase by Rac GTPase to its N-terminal extension, Plant Cell, 2007, vol. 19, no. 12, pp. 4022–4034. https://doi.org/10.1105/tpc.107.055624

Xalxo, R., Yadu, B., Chandra, J., et al., Alteration in carbohydrate metabolism modulates thermotolerance of plant under heat stress, in Heat Stress Tolerance in Plants: Physiological, Molecular and Genetic Perspectives, Wani, S.H. and Kumar, V., Eds., John Wiley & Sons, 2020, pp. 77–115. https://doi.org/10.1002/9781119432401.ch5

Xue, G.P. and Drenth, J., and McIntyre, L.C., TaHsfA6f is a transcriptional activator that regulates a suite of heat stress protection genes in wheat (Triticum aestivum L.) including previously unknown Hsf targets, J. Exp. Bot., 2015, vol. 66, no. 3, pp. 1025–1039. https://doi.org/10.1093/jxb/eru462

Yadav, A., Singh, J., Ranjan, K., et al., Heat shock proteins: Master players for heat stress tolerance in plants during climate change, in Heat Stress Tolerance in Plants: Physiological, Molecular and Genetic Perspectives, Wani, S.H. and Kumar, V., Eds., John Wiley & Sons, 2020, pp. 189–211. https://doi.org/10.1002/9781119432401.ch9

Yadav, R., Saini, R., Adhikary, A., and Kumar, S., Unravelling cross priming induced heat stress, combinatorial heat and drought stress response in contrasting chickpea varieties, Plant Physiol. Biochem., 2022, vol. 180, no. 1, pp. 91–105. https://doi.org/10.1016/j.plaphy.2022.03.030

Yamada, K., Fukao, Y., Hayashi, M., et al., Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana, J. Biol. Chem., 2007, vol. 282, no. 52, pp. 37794–37804. https://doi.org/10.1074/jbc.M707168200

Yang, H., Mu, J., Chen, L., et al., S-nitrosylation positively regulates ascorbate peroxidase activity during plant stress responses, Plant Physiol., 2015, vol. 167, no. 4, pp. 1604–1615. https://doi.org/10.1104/pp.114.255216

Yao, Y., He, R.J., Xie, Q.L., et al., ETHYLENE RESPONSE FACTOR 74 (ERF74) plays an essential role in controlling a respiratory burst oxidase homolog D (RbohD) dependent mechanism in response to different stresses in Arabidopsis, New Phytol., 2017, vol. 213, no. 4, pp. 1667–1681. https://doi.org/10.1111/nph.14278

Yatsyshyn, V.Yu., Kvasko, A.Yu., and Yemets, A.I., Genetic approaches in research on the role of trehalose in plants, Cytol. Genet., 2017, vol. 51, no. 5, pp. 371–383. https://doi.org/10.3103/S0095452717050127

Yemets, A.I., Karpets, Yu.V., Kolupaev, Yu.E., and Blume, Ya.B., Emerging technologies for enhancing ROS/ RNS homeostasis, in Reactive Oxygen, Nitrogen and Sulfur Species in Plants: Production, Metabolism, Signaling and Defense Mechanisms, Hasanuzzaman, M., Fotopoulos, V., Nahar, K., and Fujita, M., Eds., John Wiley & Sons, 2019, pp. 873–922, vol. 2. https://doi.org/10.1002/9781119468677.ch39

Yüzbaşioğlu, E., Dalyan, E., and Akpinar, I., Changes in photosynthetic pigments, anthocyanin content and antioxidant enzyme activities of maize (Zea mays L.) seedlings under high temperature stress conditions, Trakya Univ. J. Nat. Sci., 2017, vol. 18, no. 2, pp. 97–104. https://doi.org/10.23902/trkjnat.289527

Zaikina, E.A., Musin, K.G., Kuluev, A.R., et al., Change in the activity of genes of transcription factors TaNAC69, TaDREB1, and TabZIP60 in bread wheat plants with water deficiency and hypothermia, Russ. J. Plant Physiol., 2022, vol. 69, no. 3, p. 56. https://doi.org/10.1134/S1021443722030189

Zhang, H., Hydrogen sulfide in plant biology, in Gasotransmitters in Plants. The Rise of a New Paradigm in Cell Signaling, vol.: Signaling and communication in plants, Lamattina, L. and Garcia-Mata, C., Eds., Switzerland: Springer-Verlag, 2016, pp. 23–51. https://doi.org/10.1007/978-3-319-40713-5

Zheng, S.Z., Liu, Y.L., Li, B., et al., Phosphoinositidespecific phospholipase C9 is involved in the thermotolerance of Arabidopsis, Plant J., 2012, vol. 69, pp. 689–700. https://doi.org/10.1111/j.1365-313X.2011.04823.x

Zhu, X., Wang, Y., Liu, Y., et al., Overexpression of BcHsfA1 transcription factor from Brassica campestris improved heat tolerance of transgenic tobacco, PLoS One, 2018, vol. 13, no. 11, p. e0207277. https://doi.org/10.1371/journal.pone.0207277

Ziogas, V., Tanou, G., Filippou, P., et al., Nitrosative responses in citrus plants exposed to six abiotic stress conditions, Plant Physiol. Biochem., 2013, vol. 68, pp. 118–126. https://doi.org/10.1016/j.plaphy.2013.04.004