TSitologiya i Genetika 2023, vol. 57, no. 4, 11-18
Cytology and Genetics 2023, vol. 57, no. 4, 298–304, doi: https://www.doi.org/https://doi.org/10.3103/S0095452723040102

Polymorphism of the Pinb-1 gene length in Aegilops biuncialis Vis.

Sozinova O.I., Kozub N.O., Blume Ya.B.

  1. Institute of Food Biotechnology and Genomics, NAS of Ukraine, Baidy-Vyshnevetskogo str., 2а, Kyiv, 04123, Ukraine
  2. Institute of Plant Protection, NAAS, Vasylkivska str., 33, Kyiv, 03022, Ukraine

SUMMARY. Puroindolines (puroindoline a and puroindoline b) determine the texture of the wheat grain, which affects milling properties of the grain and water absorption properties of the flour. The level of common wheat hardness is controlled by the allelic composition at the Ha locus on the short arm of chromosome 5D, which contains closely linked Pina-D1 and Pinb-D1 genes. Aegilops species can be a source of novel variants of puroindoline genes for enriching the wheat gene pool. Among them is the tetraploid species Ae. biuncialis Vis. (UUMM). In our study, the polymorphism of puroindoline gene length was analyzed in Ae. biuncialis using PCR amplification with gene-specific primers. We analyzed a collection of Ae. biuncialis accessions originating from the Crimean Peninsula. Polymorphism with respect to the number of amplicons produced with gene-specific primers to the puroindoline b gene was revealed: there were one (about 520 bp) or two amplification products (about 520 and 500 bp). The frequency of accessions with two amplicons in the collection was 12.5 %. Samples with two amplicons were found in the Eastern and Southern parts of the area of the species on the Crimean Peninsula. Probably, in the Ae. biuncialis accessions with two amplicons, the fragment of about 520 bp corresponds to the Pinb-U1 gene; the 500-bp fragment, to the Pinb-M1 gene, and this allele may be similar to the rare Pinb-M1-III allele of Ae. comosa.

Keywords: puroindoline, hardness, PCR, allele, diversity, population

TSitologiya i Genetika
2023, vol. 57, no. 4, 11-18

Current Issue
Cytology and Genetics
2023, vol. 57, no. 4, 298–304,
doi: https://doi.org/10.3103/S0095452723040102

Full text and supplemented materials

References

Chantret, N., Salse, J., Sabot, F., et al., Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and Aegilops), Plant Cell, 2005, vol. 17, no. 4, pp. 1033–1045. https://doi.org/10.1105/tpc.104.029181

Chen, M., Wilkinson, M., Tosi, P., et al., Novel puroindoline and grain softness protein alleles in Aegilops species with the C, D, S, M and U genomes, Theor. Appl. Ge-net., 2005, vol. 111, no. 6, pp. 1159–1166. https://doi.org/10.1007/s00122-005-0047-7

Cuesta, S., Guzmán, C., and Alvarez, J.B., Allelic diversity and molecular characterization of puroindoline genes in five diploid species of the Aegilops genus, J. Exp. Bot., 2013, vol. 64, no. 16, pp. 5133–5143. https://doi.org/10.1093/jxb/ert299

Dulai, S., Molnár, I., Szopkó, D., et al., Wheat-Aegilops biuncialis amphiploids have efficient photosynthesis and biomass production during osmotic stress, J. Plant Physiol., 2014, vol. 171, pp. 509–517. https://doi.org/10.1016/j.jplph.2013.11.015

Farkas, A., Molnár, I., Dulai, S., et al., Increased micronutrient content (Zn, Mn) in the 3Mb(4B) wheat – Aegilops biuncialis substitution and 3Mb.4BS translocation identified by GISH and FISH, Genome, 2014, vol. 57, pp. 61–67. https://doi.org/10.1139/gen-2013-0204

Gautier, M.F., Aleman, M.E., Guirao, A., et al., Triticum aestivum puroindolines, two basic cysteine-rich seed proteins: cDNA sequence analysis and developmental gene expression, Plant Mol. Biol., 1994, vol. 25, pp. 43–57. https://doi.org/10.1007/BF00024197

Ivanizs, L., Marcotuli, I., Rakszegi, M., et al., Identification of new QTLs for dietary fiber content in Aegilops biuncialis, Int. J. Mol. Sci., 2022, vol. 23, no. 7, p. 3821. https://doi.org/10.3390/ijms23073821

Kozub, N.A., Sozinov, I.A., Xynias, I.N., et al., Allelic variation at high-molecular-weight glutenin subunit loci in Aegilops biuncialis Vis., Russ. J. Genet., 2011, vol. 47, no. 9, pp. 1078–1083. https://doi.org/10.1134/S1022795411090092

Kozub, N.A., Sozinov, I.A., and Sozinov, A.A., Identification of alleles at the gliadin loci Gli-U1 and Gli-Mb1 in Aegilops biuncialis Vis., Russ. J. Genet., 2012, vol. 48, no. 4, pp. 390–395. https://doi.org/10.1134/S1022795412030052

Kumar, S., Stecher, G., Li, M., et al., MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms, Mol. Biol. Evol., 2018, vol. 35, pp. 1547–1549. https://doi.org/10.1093/molbev/msy096

Kumar, A., Kapoor, P., Chunduri, V., et al., Potential of Aegilops sp. for improvement of grain processing and nutritional quality in wheat (Triticum aestivum), Front. Plant Sci., 2019, vol. 10, p. 308. https://doi.org/10.3389/fpls.2019.00308

Massa, A. and Morris, C.F., Molecular evolution of the puroindoline-a, puroindoline-b, and grain softness protein-1 genes in the tribe Triticeae, J. Mol. Evol., 2006, vol. 63, no. 4, pp. 526–536. https://doi.org/10.1093/molbev/msp076

Massa, A., Morris, C.F., and Gill, B.S., Sequence diversity of Puroindoline-a, Puroindoline-b, and the grain softness protein genes in Aegilops tauschii Coss, Crop Sci., 2004, vol. 44, no. 5, pp. 1808–1816. https://doi.org/10.2135/cropsci2004.1808

Molnár, I., Gaspar, L., Savari, E., et al., Physiological and morphological responses to water stress in Aegilops biuncialis and Triticum aestivum genotypes with differing tolerance to drought, Funct. Plant Biol., 2004, vol. 31, pp. 1149–1159. https://doi.org/10.1071/FP03143

Monte, J.V., De Nova, P.J.G., and Soler, C., AFLP-based analysis to study genetic variability and relationships in the Spanish species of the genus Aegilops, Hereditas, 2001, vol. 135, pp. 233–238. https://doi.org/10.1111/j.1601-5223.2001.00233.x

Morris, C.F., The antimicrobial properties of the puroindolines, a review, World J. Microbiol. Biotechnol., 2019, vol. 35, no. 6, p. 86. https://doi.org/10.1007/s11274-019-2655-4

Morris, C.F., Puroindolines: the molecular genetic basis of wheat grain hardness, Plant Mol. Biol., 2002, vol. 48, nos. 5–6, pp. 633–647. https://doi.org/10.1023/a:1014837431178

Morris, C.F., Luna, J., and Caffe-Treml, M., The Vromindolines of cv. Hayden oat (Avena sativa L.) – A review of the Poeae and Triticeae indolines and a suggested system for harmonization of nomenclature, J. Cereal Sci., 2021, vol. 97, p. 103135. https://doi.org/10.1016/j.jcs.2020.103135

Okada, M., Ikeda, T.M., Yoshida, K., et al., Effect of the U genome on grain hardness in nascent synthetic hexaploids derived from interspecific hybrids between durum wheat and Aegilops umbellulata, J. Cereal Sci., 2018, vol. 83, pp. 153–161. https://doi.org/10.1016/j.jcs.2018.08.011

Okada, M., Michikawa, A., Yoshida, K., et al., Phenotypic effects of the U-genome variation in nascent synthetic hexaploids derived from interspecific crosses between durum wheat and its diploid relative Aegilops umbellulata, PLoS One, 2020, vol. 15, no. 4, p. 0231129. https://doi.org/10.1371/journal.pone.0231129

Okuno, K., Ebana, K., Noov, B., et al., Genetic diversity and Central Asian and north Caucasian Aegilops species as revealed by RAPD markers, Genet. Res. Crop. Evol., 1998, vol. 45, pp. 389–394. https://doi.org/10.1023/A:1008660001263

Pauly, A., Pareyt, B., Fierens, E., et al., Wheat (Triticum aestivum L. and T. turgidum L. ssp. durum) kernel hardness: I. Current view on the role of puroindolines and polar lipids, Compr. Rev. Food Sci. Food Saf., 2013, vol. 12, pp. 413–426. https://doi.org/10.1111/1541-4337.12018

Rabokon, A., Demkovych, A., Sozinov, A., et al., Intron length polymorphism of β-tubulin genes of Aegilops biuncialis Vis, Cell Biol. Int., 2019, vol. 43, no. 9, pp. 1031–1039. https://doi.org/10.1002/cbin.10886

Rakszegi, M., Molnár, I., Lovegrove, A., et al., Addition of Aegilops U and M chromosomes affects protein and dietary fiber content of wholemeal wheat flour, Front. Plant Sci., 2017, vol. 8, p. 1529. https://doi.org/10.3389/fpls.2017.01529

Shewry, P., Wheat grain proteins: past, present and future, Cereal Chem., 2022, vol. 100, no. 1, pp. 9–22. https://doi.org/10.1002/cche.10585

Slageren, M.W. van, Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae), Wageningen: Agric. Univ. Pap., 1994.

Tan, F., Zhou, J., Yang, Z., et al., Characterization of a new synthetic wheat – Aegilops biuncialis partial amphiploid, Afr. J. Biotech., 2009, vol. 8, no. 14, pp. 3215–3218. https://doi.org/10.5897/AJB09.359

Turnbull, K.M., Turner, M., Mukai, Y., et al., The organization of genes tightly linked to the Ha locus in Aegilops tauschii, the D-genome donor to wheat, Genome, 2003, vol. 46, no. 2, pp. 330–338. https://doi.org/10.1139/g02-124

Xiaoling, M., Xue, H., Sun, J., et al., Transformation of Pinb-D1x to soft wheat produces hard wheat kernel texture, J. Cereal Sci., 2020, vol. 91, p. 102889. https://doi.org/10.1016/j.jcs.2019.102889

Zhou, J.P., Yao, C.H., Yang, E.N., et al., Characterization of a new wheat-Aegilops biuncialis addition line conferring quality-associated HMW glutenin subunits, Genet. Mol. Res., 2014, vol. 13, no. 1, pp. 660–669. https://doi.org/10.4238/2014.January.28.11

Zhou, J.P., Cheng, Y., Zang, L.L., et al., Characterization of a new wheat-Aegilops biuncialis 1Mb(1B) substitution line with good quality-associated HMW glutenin subunit, Cereal Res. Commun., 2016, vol. 44, no. 2, pp. 198–205. https://doi.org/10.1556/0806.43.2015.048