TSitologiya i Genetika 2023, vol. 57, no. 3, 54
Cytology and Genetics 2023, vol. 57, no. 3, 268–271, doi: https://www.doi.org/10.3103/S0095452723030052

Characterization and phylogenetic analysis of the complete mitochondrial genome of the Rhus gall aphid Schlechtendalia peitan (Hemiptera: Aphididae: Eriosomatinae) in China

Liu J., Zhang Y.-F., Ren Z.-M.

  • School of Life Science, Shanxi University, Taiyuan, Shanxi, China

The complete mitochondrial genome (mitogenome) of the Rhus gall aphid Schlechtendalia peitan in China was obtained using the shotgun genome-skimming method on an Illumina platform. The complete mitogenome of S. peitan is 15,494 bp in length with a high A+T content of 84.1 %. This mitogenome consists of 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and a control region. All the protein-coding genes initiate with a typical ATN codon and terminate with TAA codon except for COX1, ND4 and ND5 with a single T. The 22 tRNAs range from 59 to 72 bp in length, and each one is predicted as a clover-leaf secondary structure except for tRNA-Ser (AGN), which loses a dihydrouridine (DHU) arm. The ML phylogenetic tree of Fordini aphids constructed using 13 protein-coding genes and two rRNAs showed that S. peitan was sister to the group clustered by the two species Schlechtendalia chinensis and Nurudea ibofushi.

Keywords: Rhus gall aphid; Schlechtendalia peitan; Mitochondrion; Genome

TSitologiya i Genetika
2023, vol. 57, no. 3, 54

Current Issue
Cytology and Genetics
2023, vol. 57, no. 3, 268–271,
doi: 10.3103/S0095452723030052

Full text and supplemented materials


Bankevich, A., Nurk, S., Antipov, D., et al., SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing, J. Comput. Biol., 2012, vol. 19, pp. 455–477. https://doi.org/10.1089/cmb.2012.0021

Favret, C., (2021) Aphid Species File. Version 5.0/5.0. Cited July 17, 2021. http://Aphid.SpeciesFile.org.

Lohse, M., Drechsel, O., Kahlau, S., et al., OrganellarGenomeDRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets, Nucleic Acids. Res., 2013, vol. 41, pp. W575–W581. https://doi.org/10.1093/nar/gkt289

Lowe, T.M. and Chan, P.P., tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes, Nucleic Acids. Res., 2016, vol. 44, pp. W54–W57. https://doi.org/10.1093/nar/gkw413

Ren, Z.M., Harris, A.J., Dikow, R.B., et al., Another look at the phylogenetic relationships and intercontinental biogeography of eastern Asian-North American Rhus gall aphids (Hemiptera: Aphididae: Eriosomatinae): Evidence from mitogenome sequences via genome skimming, Mol. Phylogenet. Evol., 2017, vol. 117, pp. 102–110. https://doi.org/10.1016/j.ympev.2017.05.017

Ren, Z.M., Su, X., von Dohlen, C.D., et al., Nurudea zhengii Ren, a new species of the Rhus gall aphids (Aphididae, Eriosomatinae, Fordini) from eastern China, Pak. J. Zool., 2018, vol. 50, pp. 2087–2092. https://doi.org/10.17582/journal.pjz/2018.50.6.2087.2092

Ren, Z.M., von Dohlen, C.D., Harris, A.J., et al., Congruent phylogenetic relationships of Melaphidina aphids (Aphididae: Eriosomatinae: Fordini) according to nuclear and mitochondrial DNA data with taxonomic implications on generic limits, PLoS One, 2019, vol. 14, p. e0213181. https://doi.org/10.1371/journal.pone.0213181

Stamatakis, A., RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies, Bioinformatics, 2014, vol. 30, pp. 1312–1313. https://doi.org/10.1093/bioinformatics/btu033

Wolstenholme, D.R., Animal mitochondrial DNA: structure and evolution, Int. Rev. Cytol., 1992, vol. 141, pp. 173–216. https://doi.org/10.1016/S0074-7696(08)62066-5

Zhang, G.X., Qiao, G.X., Zhong, T.S., et al., Fauna sinica insect, in Homoptera: Mindaridae and Pemphigidae, Beijing: Sci. Press, 1999, vol. 14.