TSitologiya i Genetika 2023, vol. 57, no. 3, 51-53
Cytology and Genetics 2023, vol. 57, no. 3, 258–267, doi: https://www.doi.org/10.3103/S0095452723030088

Association of ABCA4 gene variants in patients with autosomal recessive Cone-Rod dystrophy and Retinitis Pigmentosa cohorts from south India

Rajendran K.R., Chermakani P., Anjanamurthy R., Rencilin C.F., Sundaresan P.

  1. Department of Genetics, Aravind Medical Research Foundation-Madurai, Tamil Nadu, India
  2. Paediatric Ophthalmology & Adult Strabismus Services, Aravind Eye Hospital-Madurai, Tamil Nadu, India
  3. Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India
  4. Department of Molecular Biology, Aravind Medical Research Foundation – Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India

The purpose of this study is to determine the genetic association and compare the distribution of ABCA4 gene variants in patients with various inherited retinal dystrophies, including autosomal recessive cone-rod dystrophy (AR-CRD) autosomal recessive retinitis pigmentosa (AR-RP) in the South Indian cohorts. This study included nineteen probands, ophthalmic examination of all the probands were carefully evaluated by the Paediatric Ophthalmologist. Eleven of the nineteen probands had the clinical phenotype of AR-CRD, eight showed AR-RP-like clinical phenotype. Genomic DNA was extracted from their peripheral blood, the exon and intronic boundaries of the ABCA4 gene were screened using the Sanger sequencing to identify the genetic association of these two retinal dystrophies. Sanger sequencing results revealed that only 18 % (2/11) of AR-CRD probands had disease-causing ABCA4 mutations, while the remaining 9 AR-CRD, 8 AR-RP were negative for the pathogenic variant associated with ABCA4. Furthermore, this study identified 18 common SNPs of the ABCA4 (2 missense, 3 synonymous, 13 intronic variants) and found them associated with AR-CRD and AR-RP probands. This is the first study to show that two missense variants in the ABCA4 (c.302T>C, c.1319A>G) are associated with AR-CRD probands and two rare NNCS variants (c.3191-10G>T, c.3814-5G>A) associated with AR-RP patients from the South Indian population.

Keywords: ABCA4, AR-CRD, AR-RP, Intronic variants, Alamut visual (v.1.1, Biointeractive Software, France), South Indian cohort

TSitologiya i Genetika
2023, vol. 57, no. 3, 51-53

Current Issue
Cytology and Genetics
2023, vol. 57, no. 3, 258–267,
doi: 10.3103/S0095452723030088

Full text and supplemented materials


Aguirre-Lamban, J., González-Aguilera, J.J., Riveiro-Alvarez, R., Cantalapiedra, D., Avila-Fernandez, A., Villaverde-Montero, C., Corton, M., Blanco-Kelly, F., Garcia-Sandoval, B., and Ayuso, C., Further associations between mutations and polymorphisms in the ABCA4 gene: clinical implication of allelic variants and their role as protector/risk factors, Invest. Ophthalmol. Visual Sci., 2011, vol. 52, no. 9, pp. 6206–6212. https://doi.org/10.1167/iovs.10-5743

Anna, A. and Monika, G., Splicing mutations in human genetic disorders: examples, detection, and confirmation, J. Appl. Genet., 2018, vol. 59, no. 3, pp. 253–268. https://doi.org/10.1007/s13353-018-0444-7

Battu, R., Verma, A., Hariharan, R., Krishna, S., Kiran, R., Jacob, J., Ganapathy, A., Ramprasad, V.L., Kumaramanickavel, G., Jeyabalan, N., and Ghosh, A., Identification of novel mutations in ABCA4 gene: clinical and genetic analysis of Indian patients with Stargardt disease, BioMed Res. Int., 2015, vol. 2015, p. 940864. https://doi.org/10.1155/2015/940864

Bauwens, M., Garanto, A., Sangermano, R., Naessens, S., Weisschuh, N., De Zaeytijd, J., Khan, M., Sadler, F., Balikova, I., Van Cauwenbergh, C., and Rosseel, T., ABCA4-associated disease as a model for missing heritability in autosomal recessive disorders: novel noncoding splice, cis-regulatory, structural, and recurrent hypomorphic variants, Genet. Med., 2019, vol. 21, no. 8, pp. 1761–1771. https://doi.org/10.1038/s41436-018-0420-y

Chen, R., Davydov, E.V., Sirota, M., and Butte, A.J., Non-synonymous and synonymous coding SNPs show similar likelihood and effect size of human disease association, PloS One, 2010, vol. 5, no. 10, p. e13574. https://doi.org/10.1371/journal.pone.0013574

Cornelis, S.S., Bax, N.M., Zernant, J., Allikmets, R., Fritsche, L.G., den Dunnen, J.T., Ajmal, M., Hoyng, C.B., and Cremers, F.P., In silico functional meta-analysis of 5.962 ABCA4 variants in 3.928 retinal dystrophy cases, Hum. Mutat., 2017, vol. 38, no. 4, pp. 400–408. https://doi.org/10.1002/humu.23165

Duncan, J.L., Pierce, E.A., Laster, A.M., Daiger, S.P., Birch, D.G., Ash, J.D., Iannaccone, A., Flan-nery, J.G., Sahel, J.A., Zack, D.J., and Zarbin, M.A., Inherited Retinal Degenerations: Current Landscape and Knowledge Gaps, Transl. Vision Sci. Technol.,2018, vol. 7, no. 4, p. 6. https://doi.org/10.1167/tvst.7.4.6

Fadaie, Z., Khan, M., Del Pozo-Valero, M., Cornelis, S.S., Ayuso, C., Cremers, F.P., Roosing, S., and ABCA4 Study Group, Identification of splice defects due to noncanonical splice site or deep-intronic variants in ABCA4, Hum. Mutat., 2019, vol. 40, no. 12, pp. 2365–2376. https://doi.org/10.1002/humu.23890

Frappier, V., Chartier, M., and Najmanovich, R.J., ENCoM server: exploring protein conformational space and the effect of mutations on protein function and stability, Nucleic Acids Res., 2015, vol. 43, no. W1, pp. W395–W400. https://doi.org/10.1093/nar/gkv343

Gill, J.S., Georgiou, M., Kalitzeos, A., Moore, A.T., and Michaelides, M., Progressive cone and cone-rod dystrophies: clinical features, molecular genetics and prospects for therapy, Br. J. Ophthalmol., 2019, vol. 103, no. 5, pp. 711–720. https://doi.org/10.1136/bjophthalmol-2018-313278

Hanany, M., Rivolta, C., and Sharon, D., Worldwide carrier frequency and genetic prevalence of autosomal recessive inherited retinal diseases, Proc. Natl. Acad. Sci. U. S. A., 2022, vol. 117, no. 5, pp. 2710–2716. https://doi.org/10.1073/pnas.1913179117

Hu, F.Y., Li, J.K., Gao, F.J., Qi, Y.H., Xu, P., Zhang, Y.J., Wang, D.D., Wang, L.S., Li, W., Wang, M., and Chen, F., ABCA4 gene screening in a chinese cohort with stargardt disease: Identification of 37 novel variants, Front. Genet., 2019, vol. 10, p. 773. https://doi.org/10.3389/fgene.2019.00773

Jubb, H.C., Higueruelo, A.P., Ochoa-Montaño, B., Pitt, W.R., Ascher, D.B., and Blundell, T.L., Arpeggio: a web server for calculating and visualizing interatomic interactions in protein structures, J. Mol. Biol., 2017, vol. 429, no. 3, pp. 365–371. https://doi.org/10.1016/j.jmb.2016.12.004

MWer, S., Dykes, D., and Polesky, H., A simple salting out procedure for extracting DNA from human nucleated cells, Nucleic Acids Res., 1998, vol. 16, no. 3, p. 1215. https://doi.org/10.1093/nar/16.3.1215

Nassisi, M., Mohand-Saïd, S., Andrieu, C., Antonio, A., Condroyer, C., Méjécase, C., Varin, J., Wohlschle-gel, J., Dhaenens, C.M., Sahel, J.A., and Zeitz, C., Prevalence of ABCA4 deep-intronic variants and related phenotype in an unsolved “one-hit” cohort with Stargardt disease, Int. J. Mol. Sci., 2019, vol. 20, no. 20, p. 5053. https://doi.org/10.3390/ijms20205053

Raj, R.K., Dhoble, P., Anjanamurthy, R., Chermakani, P., Kumaran, M., Devarajan, B., and Sundaresan, P., Genetic characterization of Stargardt clinical phenotype in South Indian patients using sanger and targeted sequencing, Eye Vision, 2020, vol. 7, no. 1, pp. 1–10. https://doi.org/10.1186/s40662-019-0168-8

Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., Grody, W.W., Hegde, M., Lyon, E., Spector, E., and Voelkerding, K., Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology, Genet. Med., 2015, vol. 17, no. 5, pp. 405–423. https://doi.org/10.1038/gim.2015.30

Rodrigues, C.H., Pires, D.E., and Ascher, D.B., DynaMut: predicting the impact of mutations on protein conformation, flexibility and stability, Nucleic Acids Res., 2018, vol. 46, no. W1, pp. W350–W355. https://doi.org/10.1093/nar/gky300

Rozet, J.M., Gerber, S., Souied, E., Perrault, I., Châtelin, S., Ghazi, I., Leowski, C., Dufier, J.L., Munnich, A., and Kaplan, J., Spectrum of ABCR gene mutations in autosomal recessive macular dystrophies, Eur. J. Hum. Genet., 1998, vol. 6, no. 3, pp. 291–295. https://doi.org/10.1038/sj.ejhg.5200221

Schmid, F., Glaus, E., Barthelmes, D., Fliegauf, M., Gaspar, H., Nürnberg, G., Nürnberg, P., Omran, H., Berger, W., and Neidhardt, J., U1 snRNA-mediated gene therapeutic correction of splice defects caused by an exceptionally mild BBS mutation, Hum. Mutat., 2011, vol. 32, no. 7, pp. 815–824. https://doi.org/10.1002/humu.21509

Singh, H.P., Jalali, S., Narayanan, R., and Kannabiran, C., Genetic analysis of Indian families with autosomal recessive retinitis pigmentosa by homozygosity screening, Invest. Ophthalmol. Visual Sci., 2009, vol. 50, no. 9, pp. 4065–4071. https://doi.org/10.1167/iovs.09-3479

Valverde, D., Riveiro-Alvarez, R., Aguirre-Lamban, J., Baiget, M., Carballo, M., Antinolo, G., Millán, J.M., Sandoval, B.G., and Ayuso, C., Spectrum of the ABCA4 gene mutations implicated in severe retinopathies in Spanish patients, Invest. Ophthalmol. Visual Sci., 2007, vol. 48, no. 3, pp. 985–990. https://doi.org/10.1167/iovs.06-0307

Verbakel, S.K., van Huet, R.A., Boon, C.J., den Hol-lander, A.I., Collin, R.W., Klaver, C.C., Hoyng, C.B., Roepman, R., and Klevering, B.J., Non-syndromic retinitis pigmentosa, Prog. Retinal Eye Res., 2018, vol. 66, pp. 157–186. https://doi.org/10.1016/j.preteyeres.2018.03.005

Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., and Zhang, Y., The I-TASSER Suite: protein structure and function prediction, Nat. Methods, 2015, vol. 12, no. 1, pp. 7–8. https://doi.org/10.1038/nmeth.3213

Zernant, J., Schubert, C., Im, K.M., Burke, T., Brown, C.M., Fishman, G.A., Tsang, S.H., Gouras, P., Dean, M., and Allikmets, R., Analysis of the ABCA4 gene by next-generation sequencing, Invest. Ophthalmol. Visual Sci., 2011, vol. 52, no. 11, pp. 8479–8487. https://doi.org/10.1167/iovs.11-8182

Zhuang, Y. and Weiner, A.M., A compensatory base change in U1 snRNA suppresses a 5′ splice site mutation, Cell, 1986, vol. 46, no. 6, pp. 827–835. https://doi.org/10.1016/0092-8674(86)90064-4