TSitologiya i Genetika 2023, vol. 57, no. 3, 28-39
Cytology and Genetics 2023, vol. 57, no. 3, 229–238, doi: https://www.doi.org/10.3103/S0095452723030040

«Green» synthesis of CdTe quantum dots and their effect on human and animal cells

Garmanchuk L., Borova M., Kapush O., Dzhagan V., Valakh M., Blume Y., Yemets A.

  1. Educational and Scientific Centre «Institute of Biology and Medicine», Taras Shevchenko National University of Kyiv, Acad. Glushkov Avenue, 2, Kyiv, 03022, Ukraine
  2. V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Nauki Avenue 41, Kyiv 03028, Ukraine
  3. Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Baidy-Vyshnevetskogo str., 2a, Kyiv, 04123, Ukraine

SUMMARY. Since the nanoscale combined with luminescent pro-perties and promising applications in various fields of optoelectronics and biomedicine leads to a growing interest in studying the features of cadmium telluride quantum dots, we have developed a method for the «green» synthesis of CdTe quantum dots using the mycelium culture of Pleurotus ostreatus as a biological matrix. The study of their physical and chemical characteristics revealed that the synthesized CdTe quantum dots have a predominantly spherical morphology and a size of 3–8 nm, a crystal structure, and a maximum luminescence in the range of 340–370 nm. When studying their effects on various types of mammalian cells, it was found that CdTe quantum dots have a dose-dependent effects on mouse endothelial cells, erythrocytes, human and rat T and B lymphocytes, colon cancer cells (Colo 205) and human breast cancer cells (MCF-7). In particular, we observed inhibition of endothelial cell proliferation and an increase in dead cells, indicating the cytotoxic effect of nanocrystalline CdTe and its antiproliferative effect on endothelial cells. CdTe quantum dots at a con-centration of 5 µM exhibited hemolytic activity when exposed to erythrocytes, affected adhesive contacts and survival of cancer cells. At the same time, human breast cancer cells (MCF-7) were more sensitive to their action. The data obtained are extremely important for understanding the mechanisms of toxicity of CdTe quantum dots for their further use in biological and biomedical research.

Keywords: «green synthesis», quantum dots, CdTe, toxicity, human cells, animal cells, cancer cell culture

TSitologiya i Genetika
2023, vol. 57, no. 3, 28-39

Current Issue
Cytology and Genetics
2023, vol. 57, no. 3, 229–238,
doi: 10.3103/S0095452723030040

Full text and supplemented materials

References

Aldughaim, M.S., Al-Anazi, M.R., Bohol, M.F., Colak, D., Alothaid, H., Wakil, S.M., Hagos, S.T., Ali, D., Alarifi, S., Rout, S., Alkahtani, S., Al-Ahdal, M.N., and Al-Qahtani, A.A., Gene expression and transcriptome profiling of changes in a cancer cell line post-exposure to cadmium telluride quantum dots: possible implications in oncogenesis, Dose-Response, 2021, vol. 19, no. 2, p. 15593258211019880. https://doi.org/10.1177/15593258211019880

Aslan, K. and Geddes, C.D., New tools for rapid clinical and bioagent diagnostics: micro waves and plasmonic nanostructures, Analyst, 2008, vol. 133, pp. 1469–1480. https://doi.org/10.1039/b808292h

Badilli, U., Mollarasouli, F., Bakirhan, N.K., Ozkan, Y., and Ozkan, S.A., Role of quantum dots in pharmaceutical and biomedical analysis, and its application in drug delivery, Trends Anal. Chem., 2020, vol. 131, p. 116013. https://doi.org/10.1016/j.trac.2020.116013

Bao, H., Na, H., Yang, Y., and Zhao, D., Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells, Nano Res., 2010a, vol. 3, pp. 481–489. https://doi.org/10.1007/s12274-010-0008-6

Bao, H., Lu, Z., Cui, X., Qiao, Y., Guo, J., Anderson, J.M., and Li, C.M., Extracellular microbial synthesis of biocompatible CdTe quantum dots, Acta Biomater., 2010b, vol. 6, pp. 3534–3541. https://doi.org/10.1016/j.actbio.2010.03.030

Blume, Y., Yemets, A., Sheremet, Y., Nyporko, A., Sulimenko, V., Sulimenko, T., and Draber, P., Exposure of beta-tubulin regions defined by antibodies on an Arabidopsis thaliana microtubule protofilament model and in the cells, BMC Plant Biol., 2010, vol. 10, p. 29. https://doi.org/10.1186/1471-2229-10-29

Blume, Y.B., Krasylenko, Y.A., Demchuk, O.M., and Yemets, A.I., Tubulin tyrosine nitration regulates microtubule organization in plant cells, Front. Plant Sci., 2013, vol. 4, p. 530. https://doi.org/10.3389/fpls.2013.00530

Borovaya, M.N., Burlaka, O.M., Yemets, A.I., and Blume, Ya.B., Biosynthesis of quantum dots and their potential applications in biology and biomedicine, in Nanoplasmonics, Nano-Optics, Nanocomposites, and Surface Studies, Fesenko, O. and Yatsenko, L., Eds., Springer-Verlag, 2015a, vol. 167, pp. 339–362. https://doi.org/10.1007/978-3-319-18543-9_24

Borovaya, M.N., Pirko, Y.V., Krupodorova, T.A., Naumenko, A.P., Blume, Ya.B., and Yemets, A.I., Biosynthesis of cadmium sulfide quantum dots using Pleurotus ostreatus (Jacq.) P. Kumm. Biotechnol. Biotechnol. Equip., 2015b, vol. 29, no. 6, pp. 1156–1163. https://doi.org/10.1080/13102818.2015.1064264

Cao, Y., The toxicity of nanoparticles to human endothelial cells, Adv. Exp. Med. Biol., 2018, vol. 1048, pp. 59–69. https://doi.org/10.1007/978-3-319-72041-8_4

Chang, Y., Cheng, X., Zhang, J., and Yu, D., Highly stable CdTe quantum dots hosted in gypsum via a flocculation-precipitation method, J. Mater. Chem. C., 2019, vol. 7, pp. 12336–12342. https://doi.org/10.1039/C9TC04412D

Chen, N., He, Y., Su, Y., Li, X., Huang, Q., Wang, H., Zhang, X., Tai, R., and Fan, C., The cytotoxicity of cadmium-based quantum dots, Biomaterials, 2012, vol. 33, pp. 1238–1244. https://doi.org/10.1016/j.biomaterials.2011.10.070

de la Нarpe, K.M., Kondiah, P.P.D., Choonara, Y.E., Marimuthu, T., Toit, L.C., and Pillay, V., The hemocompatibility of nanoparticles: a review of cell-nanoparticle interactions and hemostasis, Cells, 2019, vol. 8, no. 10, p. 1209. https://doi.org/10.3390/cells8101209

Fan, Z., Dongmei, Y., Haizhu, S., and Hao, Z., Cadmium-based quantum dots: preparation, surface modification, and applications, J. Nanosci. Nanotechnol., 2014, vol. 14, no. 2, pp. 1409–1424. https://doi.org/https://doi.org/10.1166/jnn.2014.8751

Fatima, I., Rahdar, A., Sargazi, S., Barani, M., Hassanisaadi, M., and Thakur, V.K., Quantum dots: synthesis, antibody conjugation, and HER2-receptor targeting for breast cancer therapy, J. Funct. Biomater., 2021, vol. 12, p. 75. https://doi.org/10.3390/jfb12040075

Garmanchuk, L.V., Borovaya, M.N., Nehelia, A.O., Inomistova, M., Khranovska, N.M., Tolstanova, G.M., Blume, Ya.B., and Yemets, A.I., CdS quantum dots obtained by “green” synthesis: comparative analysis of toxicity and effects on the proliferative and adhesive activity of human cells, Cytol. Genet., 2019, vol. 53, no. 2, pp. 132–142. https://doi.org/10.3103/S0095452719020026

Gil, H.M., Price, T.W., Chelani, K., Bouillard, J.G., Calaminus, S.D., Stasiuk, G.J., NIR-quantum dots in biomedical imaging and their future, iScience, 2021, vol. 24, no. 3, p. 102189. https://doi.org/10.1016/j.isci.2021.102189

Green, M., Haigh, S.J., Lewis, E.A., Sandiford, L., Burkitt-Gray, M., Fleck, R., Vizcay-Barrena, G., Jensen, L., Mirzai, H., Curry, R.J., and Dailey, L.-A., The biosynthesis of infrared-emitting quantum dots in Allium fistulosum, Sci. Rep., 2016, vol. 6, p. 20480. https://doi.org/10.1038/srep20480

Jan, S.N., Somanna, P., and Patil, A.B., Application of quantum dots in drug delivery, Nanosci. Nanotech. Asia, 2022, vol. 12, no. 1, p. e070921191305. https://doi.org/10.2174/2210681211666210211092823

Janiszewska, M., Primi, M., and Izard, T., Cell adhesion in cancer: Beyond the migration of single cells, J. Biol. Chem., 2020, vol. 295, no. 8, pp. 2495–2505. https://doi.org/10.1074/jbc.REV119.007759

Jha, S., Mathur, P., Ramteke, S., and Jain, N.K., Pharmaceutical potential of quantum dots, Artif. Cells Nanomed. Biotechnol., 2018, vol. 46, no. 1, pp. 57–65. https://doi.org/10.1080/21691401.2017.1411932

Jigyasu, A.K., Siddiqui, S., Jafri, A., Arshad, M., Lohani, M., and Khan, I.A., Biological synthesis of CdTe quantum dots and their anti-proliferative assessment against prostate cancer cell line, J. Nanosci. Nanotechnol., 2020, vol. 20, no. 6, pp. 3398–3403. https://doi.org/10.1166/jnn.2020.17316

Kadim, A.M., Applications of cadmium telluride (CdTe) in nanotechnology, in Nanomaterials – Toxicity, Human Health and Environment, Clichici, S., Filip, A., and do Nascimento, G.M., Eds., Intech, 2019, pp. 1–11. https://doi.org/10.5772/intechopen.85506

Kairdolf, B.A., Smith, A.M., Stokes, T.H., Wang, M.D., Young, A.N., and Nie, S., Semiconductor quantum dots for bioimaging and biodiagnostic applications, Ann. Rev. Anal. Chem., 2013, vol. 6, no. 1, p. 143. https://doi.org/10.1146/annurev-anchem-060908-155136

Kapush, O.A., Trishchuk, L.I., Tomashik, V.N., and Tomashik, Z.F., Effect of thioglycolic acid on the stability and photoluminescence properties of colloidal solutions of CdTe nanocrystals, Inorg. Mater., 2014, no. 50, pp. 13–18. https://doi.org/10.1134/S0020168514010105

Katubi, K.M., Alzahrani, F.M., Ali, D., and Alarif, S., Dose-and duration-dependent cytotoxicity and genotoxicity in human hepato carcinoma cells due to CdTe QDs exposure, Human Exp. Toxicol., 2019, vol. 38, no. 8, pp. 914–926. https://doi.org/10.1177/0960327119843578

Kumar, P., Semiconductor (CdSe and CdTe) quantum dot: Synthesis, properties and applications, Materialstoday: Proc., 2022, vol. 51, no. 6, pp. 900–904. https://doi.org/10.1016/j.matpr.2021.06.281

Liu, N. and Tang, M., Toxicity of different types of quantum dots to mammalian cells in vitro: An update review, J. Hazard. Mater., 2020, vol. 399, p. 122606. https://doi.org/10.1016/j.jhazmat.2020.122606

Matea, C.T., Mocan, T., Tabaran, F., Pop, T., Mosteanu, O., Puia, C., Iancu, C.,and Mocan, L., Quantum dots in imaging, drug delivery and sensor applications, Int. J. Nanomed., 2017, vol. 12, pp. 5421–5431. https://doi.org/10.2147/IJN.S138624

Matea, C.T., Mocan, T., Tabaran, F., Pop, T., Mosteanu, O., Puia, C., Iancu, C., and Mocan, L., Quantum dots in imaging, drug delivery and sensor applications, Int. J. Nanomed., 2017, vol. 12, pp. 5421–5431. https://doi.org/10.2147/IJN.S138624

Naderi, S., Zare, H., Taghavinia, N., Irajizad, A., Aghaei, M., and Panjehpour, M., Cadmium telluride quantum dots induce apoptosis in human breast cancer cell lines, Toxicol. Ind. Health, 2018, vol. 34, pp. 339–352. https://doi.org/10.1177/0748233718763517

Nel, A., Xia T., Madler, L., and Li, N., Toxic potential of materials at the nanolevel, Science, 2006, vol. 311, pp. 622–627. https://doi.org/10.1126/science.1114397

Nguyen, K.C., Seligy, V.L., and Tayabali, A.F., Cadmium telluride quantum dot nanoparticle cytotoxicity and effects on model immune responses to Pseudomonas aeruginosa, Nanotoxicology, 2013, vol. 7, pp. 202–211. https://doi.org/10.3109/17435390.2011.648667

Osovsky, R., Kloper, V., Kolny-Olesiak, J., Sashchiuk, A., and Lifshitz, E., Optical properties of CdTe nanocrystal quantum dots, grown in the presence of Cd0 nanoparticles, J. Phys. Chem. C, 2007, vol. 111, pp. 10841–10847. https://doi.org/10.1021/jp071979e

Pei, J., Zhu, H., Wang, X., Zhang, H., and Yang, X., Synthesis of cysteamine-coated CdTe quantum dots and its application in mercury (II) detection, Anal. Chim. Acta, 2012, vol. 757, pp. 63–68. https://doi.org/10.1016/j.aca.2012.10.037

Ruzycka-Ayoush, M., Kowalik, P., Kowalczyk, A., Bujak, P., Nowicka, A.M., Wojewodzka, M., Kruszewski, M., and Grudzinski, I.P., Quantum dots as targeted doxorubicin drug delivery nanosystems in human lung cancer cells, Cancer Nanotechnol., 2021, vol. 12, p. 8. https://doi.org/10.1186/s12645-021-00077-9

Sadaf, A., Zeshan, B., Wang, Z., Cui, Y., et al., Toxicity evaluation of hydrophilic CdTe quantum dots and CdTe/SiO2 nanoparticles in mice, J. Nanosci. Nanotechnol., 2012, vol. 12, no. 11, pp. 8287–8292. https://doi.org/10.1166/jnn.2012.6667

Sahoo, S.L., Liu, C.-H., Kumari, M., Wu, W.-C., and Wang, C.-C., Biocompatible quantum dot-antibody conjugate for cell imaging, targeting and fluorometric immunoassay: crosslinking, characterization and applications, RSC Adv., 2019, vol. 9, pp. 32791–32803. https://doi.org/10.1039/c9ra07352c

Syed, A. and Ahmad, A., Extracellular biosynthesis of CdTe quantum dots by the fungus Fusarium oxysporum and their anti-bacterial activity, Spectrochim. Acta, Part A, 2013, vol. 106, pp. 41–47. https://doi.org/10.1016/j.saa.2013.01.002

Talapin, D.V., Haubold, S., Rogach, A.L., Kornowski, A., Haase, M., and Weller, H., A novel organometallic synthesis of highly luminescent CdTe nanocrystals, J. Phys. Chem. B, 2001, vol. 105, pp. 2260–2263. https://doi.org/10.1021/jp003177o

Yan, M., Zhang, Y., Xu, K., Fu, T., Qin, H., and Zheng, X., An in vitro study of vascular endothelial toxicity of CdTe quantum dots, Toxicology, 2011, vol. 282, pp. 94–103. https://doi.org/10.1016/j.tox.2011.01.015

Yemets, A., Stelmakh, O., and Blume, Y.B., Effects of the herbicide isopropyl-N-phenyl carbamate on microtubules and MTOCs in lines of Nicotiana sylvestris resistant and sensitive to its action, Cell Biol. Int., 2008, vol. 32, no. 6, pp. 623–629. https://doi.org/10.1016/j.cellbi.2008.01.012

Yu, Y., Xu, L., Chen, J., Gao, H., Wang, S., Fang, J., and Xu, S., Hydrothermal synthesis of GSH–TGA cocapped CdTe quantum dots and their application in labeling colorectal cancer cells, Colloids Surf., B, 2012, vol. 95, pp. 247–253. https://doi.org/10.1016/j.colsurfb.2012.03.011

Zhang, Y., Kaji, N., Tokeshi, M., and Baba, Y., Nanobiotechnology: quantum dots in bioimaging, Exp. Rev. Proteomics, 2007, vol. 4, no. 4, pp. 565–572. https://doi.org/10.1586/14789450.4.4.565

Zhao, M.X. and Zhu, B.J., The research and applications of quantum dots as nano-carriers for targeted drug delivery and cancer therapy, Nanoscale Res. Lett., 2016, vol. 11, p. 207. https://doi.org/10.1186/s11671-016-1394-9