|
|||
![]()
|
![]() Main page Contacts Themes Archive ![]() Themes Subscription Information to authors Editorial board Mobile version In Ukrainian Export citations UNIMARC BibTeX RIS | ![]() |
PROTOONCOGENE MDM2 SNP309 (rs2279744) ANALYSIS
|
|
|
Ashfaq, F., Ali, Q., Haider, M., Hafeez, M., and Malik, A., Therapeutic activities of garlic constituent phytochemicals, Biol. Clin. Sci. Res. J., 2021, vol. 2021, no. 1, p. 53.
Cahilly-Snyder, L., Yang-Feng, T., Francke, U., and George, D.L., Molecular analysis and chromosomal mapping of amplified genes isolated from a transformed mouse 3T3 cell line, Somat. Cell Mol. Genet., 1987, vol. 13, pp. 235–244.
Cao, J., Zhang, M., Zhang, L., Lou, J., Zhou, F., and Fang, M., Non-coding RNA in thyroid cancer. Functions and mechanisms, Cancer Lett., 2021, vol. 496, pp. 117–226.
Chen, Y., Hao, Q., Wang, S., Cao, M., Huang, Y., Weng, X., Wang, J., Zhang, Z., He, X., Lu, H., and Zhou, X., Inactivation of the tumor suppressor p53 by long noncoding RNA RMRP, Proc. Natl. Acad. Sci. U. S. A., 2021, vol. 118, no. 29.
Fåhraeus, R. and Olivares-Illana, V., MDM2’s social network, Oncogene, 2014, vol. 33, pp. 4365–4376.
Fakharzadeh, S.S., Trusko, S.P., and George, D.L., Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line, EMBO J., 1991, vol. 10, pp. 1565–1569.
Humpton, T.J., Nomura, K., Weber, J., Magnussen, H.M., Hock, A.K., Nixon, C., Dhayade, S., Stevenson, D., Huang, D.T., Strathdee, D., and Blyth, K., Differential requirements for MDM2 E3 activity during embryogenesis and in adult mice, Genes Dev., 2021, vol. 35, nos. 1–2, pp. 117–132.
Jemal, A., Desantis, C., and Ward, E.M., Global patterns of cancer incidence and mortality rates and trends, Cancer Epid. Biomarkers Prev., 2010, vol. 19, pp. 1893–1908.
Levine, A.J., p53, the cellular gatekeeper for growth and division, Cell, 1997, vol. 88, pp. 323–331.
Malik, A., Hafeez, K., Nazar, W., Naeem, M., Ali, I., Ali, Q., Mujtaba, Z., Rana, M.A., and Hafeez, M.M., Assessment of controversial risk factors in development of breast cancer: a study from local population, Biol. Clin. Sci. Res. J., 2021, vol. 2021, no. 1, p. 49.
Momand, J., Jung, D., Wilczynski, S., and Niland, J., The MDM2 gene amplification database, Nucleic Acids Res., 1998, vol. 26, pp. 3453–3459.
Montes de Oca Luna, R., Wagner, D.S., and Lozano, G., Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53, Nature, 1995, vol. 378, pp. 203–206.
Oliner, J.D., Kinzler, K.W., Meltzer, P.S., George, D.L., and Vogelstein, B., Amplification of a gene encoding a p53-associated protein in human sarcomas, Nature, 1992, vol. 358, pp. 80–83.
Pallante, P., Battista, S., Pierantoni, G.M., and Fusco, A., Deregulation of microRNA expression in thyroid neoplasias, Nat. Rev. Endocrinol., 2014, vol. 10, pp. 88–101.
Sarwar, M.R. and Saqib, A., Cancer prevalence, incidence and mortality rates in Pakistan in 2012, Cogent. Med., 2017, vol. 34, pp. 1–13.
Thrower, J.S., Hoffman, L., Rechsteiner, M., and Pickart, C.M., Recognition of the polyubiquitin proteolytic signal, EMBO J., 2000, vol. 19, pp. 94–102.
Ward, E.M., Jemal, A., and Chen, A., Increasing incidence of thyroid cancer: is diagnostic scrutiny the sole explanation?, Future Oncol., 2010, vol. 6, pp. 185–188.
Xing, M., Molecular pathogenesis and mechanisms of thyroid cancer, Nat. Rev. Cancer, 2013, vol. 13, pp. 184–199.
Yuan, Z., Yang, Z ., and Zheng, Q., Deregulation of microRNA expression in thyroid tumors, J. Zhejiang Univ. Sci. B, 2014, vol. 15, pp. 212–224.
Zhao, J., Blayney, A., Liu, X., Gandy, L., Jin, W., Yan, L., Ha, J.H., Canning, A.J., Connelly, M., Yang, C., and Liu, X., EGCG binds intrinsically disordered N-terminal domain of p53 and disrupts p53-MDM2 interaction, Nat. Commun., 2021, vol. 12, no. 1, pp. 1–1.
|
|||
Coded & Designed by Volodymyr Duplij | Modified 29.01.23 |