|
|||
![]()
|
![]() Main page Contacts Themes Archive ![]() Themes Subscription Information to authors Editorial board Mobile version In Ukrainian Export citations UNIMARC BibTeX RIS | ![]() |
Regeneration of skeletal muscle fibers and regulation of myosatellite cells’ metabolism
SUMMARY. keletal muscle is a heterogeneous tissue that contains contractile fibers of various types. Their proportion depends on heredity, type of exercise, sex, age and muscle type. In addition, there are large numbers of stem cells (myosatellitocytes) in the muscle tissue. Myosatellitocytes are used to heal or regenerate micro-tears always occurring in the muscles during intense physical exercises. Myosatellitocytes can reside in an inactive «dormant» state for a long time, but, if necessary, can be activated quickly to provide the effective repair of damaged muscle fibers. The metabolism of myosatellitocytes and myoblasts and their migration to the damage area are regulated by a complicated system of cytokines and transcription factors, whose activity depends on many factors. Muscle micro-tears are the determining factor, initiating the development of a local inflammation and activation of myosatellitocytes in the muscle. The elucidation of molecular mechanisms of interrelationships between muscle tissue inflammation and changes in the metabolism of myosatellitocytes is necessary to select efficient remedies for muscle recovery and regeneration. Key words: myosatellite cells, single nucleotide polymorphisms, transcription factors, skeletal muscle, regeneration
Tsitologiya i Genetika 2022, vol. 56, no. 3, pp. 55-64
E-mail: biolog
ReferencesAbreu, P., Serna, J.D.C., Munhoz, A.C., and Kowaltowski, A.J., Calorie restriction changes muscle satellite cell proliferation in a manner independent of metabolic modulation, Mech. Ageing Dev., 2020, vol. 192, art. ID 111362. https://doi.org/10.1016/j.mad.2020.111362 Ahmetov, I.I., Druzhevskaya, A., Lyubaeva, E.V., Popov, D.V., Vinogradova, O.L., Williams, A.G., The dependence of preferred competitive racing distance on muscle fibre composition and ACTN3 genotype in speed skaters, Exp. Physiol., 2011, vol. 96, no. 12, pp. 1302–1310. https://doi.org/10.1113/expphysiol.2011.060293 Anderson, J.E., A role for nitric oxide in muscle repair: nitric oxide-mediated activation of muscle satellite cells, Mol. Biol. Cell., 2000, vol. 11, no. 5, pp. 1859–1874. https://doi.org/10.1091/mbc.11.5.1859 Bisetto, S., Wright, M.C., Nowak, R.A., Lepore, A.C., Khurana, T.S., Loro, E., and Philp, N.J., New insights into the lactate shuttle: role of MCT4 in the modulation of the exercise capacity, Science, 2019, vol. 22, pp. 507–518. https://doi.org/10.1016/j.isci.2019.11.041 Blondelle, J., Shapiro, P., Domenighetti, A.A., and Lange, S., Cullin E3 ligase activity is required for myoblast differentiation, J. Mol. Biol., 2017, vol. 429, no. 7, pp. 1045–1066. https://doi.org/10.1016/j.jmb.2017.02.012 Bosch-Presegue, L. and Vaquero, A., Sirtuin-dependent epigenetic regulation in the maintenance of genome integrity, FEBS J., 2015, vol. 282, no. 9, pp. 1745–1767. https://doi.org/10.1111/febs.13053 Brack, A.S., Conboy, M.J., Roy, S., Lee, M., Kuo, C.J., Keller, C., and Rando, T.A., Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis, Science, 2007, vol. 317, no. 5839, pp. 807–810. https://doi.org/10.1126/science.1144090 Brack, A.S. and Rando, T.A., Tissue-specific stem cells: lessons from the skeletal muscle satellite cell, Cell Stem Cell, 2012, vol. 10, no. 5, pp. 504–514. https://doi.org/10.1016/j.stem Britto, F.A., Gnimassou, O., De Groote, E., Balan, E., Warnier, G., Everard, A., Cani, P.D., and Deldicque, L., Acute environmental hypoxia potentiates satellite cell-dependent myogenesis in response to resistance exercise through the inflammation pathway in human, FASEB J., 2020, vol. 34, no, 1, pp. 1885–1900. https://doi.org/10.1096/fj.201902244R Canto, C. and Auwerx, J., Calorie restriction: is AMPK a key sensor and effector?, Physiology, 2011, vol. 26, pp. 214–224. https://doi.org/10.1152/physiol.00010.2011 Cerletti, M., Jang, Y.C., Finley, L.W., Haigis, M.C., and Wagers, A.J., Short-term calorie restriction enhances skeletal muscle stem cell function, Cell Stem Cell, 2012, vol. 10, no. 5, pp. 515–519. https://doi.org/10.1016/j.stem.2012.04.002 Collins-Hooper, H., Woolley, T.E., Dyson, L., Patel, A., Potter, P., Baker, R.E., Gaffney, E.A., Maini, P.K., Dash, P.R., and Patel, K., Age-related changes in speed and mechanism of adult skeletal muscle stem cell migration, Stem Cells, 2012, vol. 30, no. 6, pp. 1182–1195. https://doi.org/10.1002/stem.1088 Dell’Orso, S., Juan, A.H., Ko, K.D., Naz, F., Perovanovic, J., Gutierrez-Cruz, G., Feng, X., and Sartorelli, V., Single cell analysis of adult mouse skeletal muscle stem cells in homeostatic and regenerative conditions, Development, 2019, vol. 146, no. 12, art. ID dev174177. https://doi.org/10.1242/dev.174177 Dong, Z., Saikumar, P., Weinberg, J.M., and Venkatachalam, M.A., Calcium in cell injury and death, Annu. Rev. Pathol., 2006, vol. 1, pp. 405–434. https://doi.org/10.1146/annurev.pathol.1.110304.100218 Fang, Y., Tang, S., and Li, X., Sirtuins in metabolic and epigenetic regulation of stem cells, Trends Endocrinol. Metab., 2019, vol. 30, pp. 177–188. https://doi.org/10.1016/j.tem.2018.12.002 Fuchs, E. and Chen, T., A matter of life and death: self-renewal in stem cells, EMBO Rep., 2013, vol. 14, no. 1, pp. 39–48. https://doi.org/10.1038/embor.2012.197 Fukada, S., Uezumi, A., Ikemoto, M., Masuda, S., Segawa, M., Tanimura, N., Yamamoto, H., Miyagoe-Suzuki, Y. and Takeda, S., Molecular signature of quiescent satellite cells in adult skeletal muscle, Stem Cells, 2007, vol. 25, no. 10, pp. 2448–2459. https://doi.org/10.1634/stemcells.2007-0019 Fuku, N., Kumagai, H., and Ahmetov, I., Genetics of muscle fiber composition, in Sports, Exercise, and Nutritional Genomics, 2019, vol. 14, pp. 295–314. https://doi.org/10.1016/B978-0-12-816193-7.00014-2 Book Gerrits, M.F., Ghosh, S., Kavaslar, N., Hill, B., Tour, A., Seifert, E.L., Beauchamp, B., Gorman, S., Stuart, J., Dent, R., McPherson, R., and Harper, M.E., Distinct skeletal muscle fiber characteristics and gene expression in diet-sensitive versus diet-resistant obesity, J. Lipid Res., 2010, vol. 51, no. 8, pp. 2394–2404. https://doi.org/10.1194/jlr.P005298 Haizlip, K.M., Harrison, B.C., and Leinwand, L.A., Sex-based differences in skeletal muscle kinetics and fiber-type composition, Physiology, 2015, vol. 30, no. 1, pp. 30–39. https://doi.org/10.1152/physiol.00024.2014 Halestrap, A.P. and Wilson, M.C., The monocarboxylate transporter family—Role and regulation, IUBMB Life, 2012, vol. 64, no. 2, pp. 109–119. https://doi.org/10.1002/iub.572 Hardie, D.G., Ross, F.A., and Hawley, S.A., AMPK: a nutrient and energy sensor that maintains energy homeostasis, Nat. Rev. Mol. Cell. Biol., 2012, vol. 13, no. 4, pp. 251–262. https://doi.org/10.1038/nrm3311 Hendrickse, P.W., Venckunas, T., Platkevicius, J., Kairaitis, R., Kamandulis, S., Snieckus, A., Stasiulis, A., Vitkiene, J., Subocius, A., and Degens, H., Endurance training-induced increase in muscle oxidative capacity without loss of muscle mass in younger and older resistance-trained men, Eur. J. Appl. Physiol., 2021, vol. 121, no. 11, pp. 3161–3172. https://doi.org/10.1007/s00421-021-04768-4 Jing, H. and Lin, H., Sirtuins in epigenetic regulation, Chem. Rev., 2015, vol. 115, no. 6, pp. 2350–2375. https://doi.org/10.1021/cr500457h Kantarci, A. and Van Dyke, T.E., Lipoxins in chronic inflammation, Crit. Rev. Oral Biol. Med., 2003, vol. 14, no. 1, pp. 4–12. https://doi.org/10.1177/154411130301400102 Karalaki, M., Fili, S., Philippou, A. and Koutsilieris, M., Muscle regeneration: cellular and molecular events, In Vivo, 2009, vol. 23, no. 5, pp. 779–796. Klein, C.S., Marsh, G.D., Petrella, R.J., and Rice, C.L., Muscle fiber number in the biceps brachii muscle of young and old men, Muscle Nerve, 2003, vol. 28, no. 1, pp. 62–68. https://doi.org/10.1002/mus.10386 Kumagai, H., Tobina, T., Ichinoseki-Sekine, N., Kakigi, R., Tsuzuki, T., Zempo, H., Shiose, K., Yoshimura, E., Kumahara, H., Ayabe, M., Higaki, Y., Yamada, R., Kobayashi, H., Kiyonaga, A., Naito, H., Tanaka, H., Fuku, N., Role of selected polymorphisms in determining muscle fiber composition in Japanese men and women, J. Appl. Physiol., 2018, vol. 124, no. 5, pp. 1377–1384. https://doi.org/10.1152/japplphysiol.00953.2017 Kumar, V., Abbas, A.K. and Aster, J.C., Robbins Basic Pathology, Elsevier, 2012. Kutseryb, T., Hrynkiv, M., Vovkanych, L., and Muzyka, F., Influence of basketball training on the features of women’s physique, J. Phys. Educ. Sport, 2019, vol. 19, no. 4, pp. 2384–2389. https://doi.org/10.7752/jpes.2019.04361 Lamont, L.A., Tranquilli, W.J., and Grimm, K.A., Physiology of pain, Vet. Clin. North Am. Small Anim. Pract., 2000, vol. 30, no. 4, pp. 703–728. https://doi.org/10.1016/s0195-5616(08)70003-2 Latil, M., Rocheteau, P., Chatre, L., Sanulli, S., Mémet, S., Ricchetti, M., Tajbakhsh, S., and Chrétien, F., Skeletal muscle stem cells adopt a dormant cell state post mortem and retain regenerative capacity, Nat. Commun., 2012, vol. 3, art. ID 903. https://doi.org/10.1038/ncomms1890 Le Moal, E., Pialoux, V., Juban, G., Groussard, C., Zouhal, H., Chazaud, B., and Mounier, R., Redox control of skeletal muscle regeneration, Antioxid. Redox Signal, 2017, vol. 27, no. 5, 276–310. https://doi.org/10.1089/ars.2016.6782 Liu L, Cheung, T.H., Charville, G.W., Hurgo, B.M., Leavitt, T., Shih, J., Brunet, A., and Rando, T.A., Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging, Cell Rep., 2013, vol. 4, no. 1, pp. 189–204. https://doi.org/10.1016/j.celrep.2013.05.043 Marzetti, E., Lawler, J.M., Hiona, A., Manini, T., Seo, A.Y., and Leeuwenburgh, C., Modulation of age-induced apoptotic signaling and cellular remodeling by exercise and calorie restriction in skeletal muscle, Free Radical Biol. Med., 2008, vol. 44, no. 2, pp. 160–168. https://doi.org/10.1016/j.freeradbiomed.2007.05.028 Mauro, A., Satellite cell of skeletal muscle fibers, J. Biophys. Biochem. Cytol., 1961, vol. 9, no. 2, pp. 493–495. https://doi.org/10.1083/jcb.9.2.493 Mayer, U., Integrins: redundant or important players in skeletal muscle?, J. Biol. Chem., 2003, vol. 278, no. 17, pp. 14587–14590. https://doi.org/10.1074/jbc.R200022200 May-Simera, H.L. and Kelley, M.W., Cilia, Wnt signaling, and the cytoskeleton, Cilia, 2012, vol. 1, no. 1, art. ID 7. https://doi.org/10.1186/2046-2530-1-7 Moussaieff, A., Rouleau, M., Kitsberg, D., Cohen, M., Levy, G., Barasch, D., Nemirovski, A., Shen-Orr, S., Laevsky, I., Amit, M., Bomze, D., Elena-Herrmann, B., Scherf, T., Nissim-Rafinia, M., Kempa, S., Itskovitz-Eldor, J., Meshorer, E., Aberdam, D., and Nahmias, Y., Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells, Cell Metab., 2015, vol. 21, no. 3, pp. 392–402. https://doi.org/10.1016/j.cmet.2015.02.002 Nalbandian, M., Radak, Z., and Takeda, M., Lactate metabolism and satellite cell fate, Front. Physiol., 2020, vol. 11, art. ID 610983. https://doi.org/10.3389/fphys.2020.610983 Nathan, C. and Cunningham-Bussel, A., Beyond oxidative stress: an immunologist’s guide to reactive oxygen species, Nat. Rev. Immunol., 2013, vol. 13, pp. 349–361. https://doi.org/10.1038/nri3423 Needleman, P., Turk, J., Jakschik, B.A., Morrison, A.R., and Lefkowith, J.B., Arachidonic acid metabolism, Annu. Rev. Biochem., 1986, vol. 55, pp. 69–102. https://doi.org/10.1146/annurev.bi.55.070186.000441 Oishi, Y., Tsukamoto, H., Yokokawa, T., Hirotsu, K., Shimazu, M., Uchida, K., Tomi, H., Higashida, K., Iwanaka, N., and Hashimoto, T., Mixed lactate and caffeine compound increases satellite cell activity and anabolic signals for muscle hypertrophy, J. Appl. Physiol., 2015, vol. 118, no. 6, pp. 742–749. https://doi.org/10.1152/japplphysiol.00054.2014 Otto, A., Collins-Hooper, H., Patel, A., Dash, P.R., and Patel, K., Adult skeletal muscle stem cell migration is mediated by a blebbing/amoeboid mechanism, Rejuvenation Res., 2011, vol. 14, no. 3, pp. 249–260. https://doi.org/10.1089/rej.2010.1151 Pallafacchina, G., Blaauw, B., and Schiaffino, S., Role of satellite cells in muscle growth and maintenance of muscle mass, Nutr., Metab. Cardiovasc. Dis., 2013, vol. 23, pp. 12–18. https://doi.org/10.1016/j.numecd2012.02.002D Kaipainen, A., Greene, E.R., and Huang, S., Cytochrome P450-derived eicosanoids: the neglected pathway in cancer, Cancer Metastasis Rev., 2010, vol. 29, no. 4, pp. 723–735. https://doi.org/10.1007/s10555-010-9264-x Quintero, A.J., Wright, V.J., Fu, F.H., and Huard, J., Stem cells for the treatment of skeletal muscle injury, Clin. Sports Med., 2009, vol. 28, no. 1, pp. 1–11. https://doi.org/10.1016/j.csm.2008.08.009 Radmark, O., Werz, O., Steinhilber, D., and Samuelsson, B., 5-Lipoxygenase, a key enzyme for leukotriene biosynthesis in health and disease, Biochim. Biophys. Acta, 2015, vol. 1851, no. 4, pp. 331–339. https://doi.org/10.1016/j.bbalip.2014.08.012 Ricciotti, E. and FitzGerald, G.A., Prostaglandins and inflammation, Arterioscler., Thromb., Vasc. Biol., 2011, vol. 31, no. 5, pp. 986–1000. https://doi.org/10.1161/ATVBAHA.110.207449 Rocheteau, P., Vinet, M., and Chretien, F., Dormancy and quiescence of skeletal muscle stem cells, Results Probl. Cell Differ., 2015, vol. 56, pp. 215–235. https://doi.org/10.1007/978-3-662-44608-9_10 Ryall, J.G., Metabolic reprogramming as a novel regulator of skeletal muscle development and regeneration, FEBS J., 2013, vol. 280, pp. 4004–4013. https://doi.org/10.1111/febs.12189 Schmidt, M., Schüler, S.C., Hüttner, S.S., von Eyss, B., and von Maltzahn, J., Adult stem cells at work: regenerating skeletal muscle, Cell Mol. Life Sci., 2019, vol. 76, no. 13, pp. 2559–2570. https://doi.org/10.1007/s00018-019-03093-6 Schoenfeld, B.J., The mechanisms of muscle hypertrophy and their application to resistance training, J. Strength Cond. Res., 2010, vol. 24, no. 10, pp. 2857–2872. https://doi.org/10.1519/JSC.0b013e3181e840f3 Scott, W., Stevens, J., and Binder-Macleod, S.A., Human skeletal muscle fiber type classifications, Phys. Ther., 2001, vol. 81, no. 11, pp. 1810–1816. PMID: 11694174 Suwa, M., Nakamura, T., Katsuta, S., Heredity of muscle fiber composition and correlated response of the synergistic muscle in rats, Am. J. Physiol., 1996, vol. 271, no. 2, pp. R432–R436. https://doi.org/10.1152/ajpregu.1996.271.2.R432 Sybil, M.G., Pervachuk, R.V., and Trach, V.M., Personalization of freestyle wrestlers’ training process by influence the anaerobic systems of energy supply, J. Phys. Educ. Sport., 2015, vol. 15, no. 2, pp. 225–228. https://doi.org/10.7752/jpes.2015.02035 Tang, A.H. and Rando, T.A., Induction of autophagy supports the bioenergetic demands of quiescent muscle stem cell activation, EMBO J., 2014, vol. 33, no. 23, pp. 2782–2797. https://doi.org/10.15252/embj.201488278 Theret, M., Gsaier, L., Schaffer, B., Juban, G., Ben Larbi, S., Weiss-Gayet, M., Bultot, L., Collodet, C., Foretz, M., Desplanches, D., Sanz, P., Zang, Z., Yang, L., Vial, G., Viollet, B., Sakamoto, K., Brunet, A., Chazaud, B., and Mounier, R., AMPKα1-LDH pathway regulates muscle stem cell self-renewal by controlling metabolic homeostasis, EMBO J., 2017, vol. 36, no. 13, pp. 1946–1962. https://doi.org/10.15252/embj.201695273 Vierck, J., O’Reilly, B., Hossner, K., Antonio, J., Byrne, K., Bucci, L., and Dodson, M., Satellite cell regulation following myotrauma caused by resistance exercise, Cell Biol. Int., 2000, vol. 24, no. 5, 263–272. https://doi.org/10.1006/cbir.2000.0499 Wilkinson, D.J., Piasecki, M., and Atherton, P.J., The age-related loss of skeletal muscle mass and function: Measurement and physiology of muscle fibre atrophy and muscle fibre loss in humans, Ageing Res. Rev., 2018, vol. 47, pp. 123–132. https://doi.org/10.1016/j.arr.2018.07.005 Willkomm, L., Schubert, S., Jung, R., Elsen, M., Borde, J., Gehlert, S., Suhr, F., and Bloch, W., Lactate regulates myogenesis in C2C12 myoblasts in vitro, Stem Cell Res., 2014, vol. 12, no. 3, pp. 742–753. https://doi.org/10.1016/j.scr.2014.03.004 Wright, E.M. and Woodson, J.F., Clinical assessment of pain in laboratory animals, in Rollin, B.E., Kesel, M.L., Eds., The Experimental Animal in Biologic Research, Boca Raton: CRC Press, 1990, pp. 205–216. Yamakawa, H., Kusumoto, D., Hashimoto, H., and Yuasa, S., Stem cell aging in skeletal muscle regeneration and disease, Int. J. Mol. Sci., 2020, vol. 21, no. 5, art. ID 1830. https://doi.org/10.3390/ijms21051830 Zammit, P.S., Relaix, F., Nagata, Y., Ruiz, A.P., Collins, C.A., Partridge, T.A., Beauchamp, J.R., Pax7 and myogenic progression in skeletal muscle satellite cells, J. Cell Sci., 2006, vol. 119, pp. 1824–1832. https://doi.org/10.1242/jcs.02908 |
|
|||
Coded & Designed by Volodymyr Duplij | Modified 06.12.23 |