ISSN 0564-3783  



Main page
Contacts
Themes
Archive  
Themes
Subscription
Information to authors
Editorial board
Mobile version


In Ukrainian

Export citations
UNIMARC
BibTeX
RIS





Evaluation of phytotoxicity and mutagenicity of novel DMAEMA-containing gene carriers

Finiuk N., Romanyuk N., Mitina N., Lobachevska O., Zaichenko A., Terek O., Stoika R.

 




SUMMARY. A use of novel carriers for gene delivery is rapidly gro-wing, thus, investigation of potential phytotoxic and mutagenic action of gene delivery carriers is important for excluding their negative side effects. We found that poly-DMAEMA carriers used in 0,0025 % dose exhibited weak cytotoxic effect towards Allium cepa plant. In higher dose (0,025 %), they slightly (by 26Ц55 %) increased the level of catalase activity, but they did not affect the level of superoxide dismutase activity and malonic dialdehyde content in roots of A. cepa. The results of ana-telophase test in A. cepa did not demonstrate a genotoxic activity of the polymeric carriers used in 0.0025 % concentration and its higher dose (0,025 %). Slight genotoxic activity was detected only for BGP24 and BGP26, PEG-containing poly-DMAEMA carriers used in 0,025 %. The DMAEMA-based polymers did not possess muta-genic potential estimated in Ames test (ЦS9 and +S9). Thus, low phytotoxicity and absence of mutagenic action of novel polymeric carriers suggest their potential as promising nanocarriers for gene delivery into plant cells.

Key words: poly(2-dimethylamino)ethyl methacrylate, polymeric carrier, ana-telophase assay, Ames test, catalase, superoxide dismutase, malonic dialdehyde

Tsitologiya i Genetika 2020, vol. 54, no. 5, pp. 75-88

  1. Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov st., 14/16, Lviv, 79005, Ukraine
  2. Ivan Franko National University of Lviv, Hrushevskyy st., 4, Lviv, 79005, Ukraine
  3. Lviv Polytechnic National University, Bandera st., 12, Lviv, 79013, Ukraine
  4. Institute of Ecology of the Carpathians of National Academy of Sciences of Ukraine, Kozelnytska st., 4, Lviv, 79026, Ukraine

E-mail: stoika.rostyslav gmail.com

Finiuk N., Romanyuk N., Mitina N., Lobachevska O., Zaichenko A., Terek O., Stoika R. Evaluation of phytotoxicity and mutagenicity of novel DMAEMA-containing gene carriers, Tsitol Genet., 2020, vol. 54, no. 5, pp. 75-88.

In "Cytology and Genetics":
N. Finiuk, N. Romanyuk, N. Mitina, O. Lobachevska, A. Zaichenko, O. Terek & R. Stoika Evaluation of Phytotoxicity and Mutagenicity of Novel DMAEMA-Containing Gene Carriers, Cytol Genet., 2020, vol. 54, no. 5, pp. 437Ц448
DOI: 10.3103/S0095452720050096


References

1. Cunningham, F.J., Goh, N.S., Demirer, G.S., Matos, J.L., and Landry, M.P., Nanoparticle-mediated delivery towards advancing plant genetic engineering, Trends Biotechnol., 2018, vol. 36, no. 9, pp. 882Ц897. https://doi.org/10.1016/j.tibtech.2018.03.009

2. Demirer, G.S., Zhang, H., Matos, J.L., Goh, N.S., Cunningham, F.J., Sung, Y., Chang, R., Aditham, A.J., Chio, L., Cho, M.J., Staskawicz, B., and Landry, M.P., High-aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants, Nat. Nanotechnol., 2019, vol. 14, no. 5, pp. 456Ц464. https://doi.org/10.1038/s41565-019-0382-5

3. Tomlinson and Rolland, A.P., Controllable gene therapy: pharmaceutics of non-viral gene delivery systems, J. Control. Release, 1996, vol. 39, nos. 2Ц3, pp. 357Ц372. https://doi.org/10.1016/0168-3659(95)00166-2

4. Lv, H., Zhang S., Wang B., Cui S., and Yan J. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release, 2006, vol. 114, no. 1, pp. 100Ц109. https://doi.org/10.1016/j.jconrel.006.04.014

5. Cerda-Cristerna B.I., Flores H., Pozos-Guillén A., Pérez E., Sevrin C., and Grandfils C. Hemocompatibility assessment of poly(2-dimethylaminoethylmethacrylate) (PDMAEMA)-based polymers, J. Control. Release, 2011, vol. 153, no. 3, pp. 269Ц277. https://doi.org/10.1016/j.jconrel.2011.04.016

6. Plamper, F.A., Synatschke, C.V., Majewski, A.P., Schmalz, A., Schmalz, H., and Müller, A.H.E., Star-shaped poly[2-(dimethylamino)ethyl methacrylate] and its derivatives: toward new properties and applications, Polimery, 2014, vol. 59, no. 1, pp. 66Ц73. https://doi.org/10.14314/polimery.2014.066

7. Zhang, S., Xu, Y., Wang, B., Qiao, W., Liu, D., and Li, Z., Cationic compounds used in lipoplexes and polyplexes for gene delivery, J. Control. Release, 2004, vol. 100, no. 2, pp. 165Ц180. https://doi.org/10.1016/j.jconrel.2004.08.019

8. Agarwal, S., Zhang, Y., Maji, S., and Greiner, A., PDMAEMA based gene delivery materials, Materials Today, 2012, vol. 15, no. 9, pp. 388Ц393. https://doi.org/10.1016/S1369-7021(12)70165-7

9. Arnold, A.E, Czupiel, P., and Shoichet, M., Engineered polymeric nanoparticles to guide the cellular internalization and trafficking of small interfering ribonucleic acids, J. Control. Release, 2017, vol. 259, pp. 3Ц15. https://doi.org/10.1016/j.jconrel.2017.02.019

10. Cheng, Q., Du, L.L., Meng, L.W., Han, S.C., Wei, T., Wang, X.X., Wu, Y.D., Song, X.Y., Zhou, J.H., Zheng, S.Q., Huang, Y.Y., Liang, X.J., Cao, H.Q., Dong, A.J., and Liang, Z.C., The promising nanocarrier for doxorubicin and siRNA co-delivery by PDMAEMA-based amphiphilic nanomicelles, ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 7, pp. 4347Ц4356. https://doi.org/10.1021/acsami.5b11789

11. Ficen, S.Z., Guler, Z., Mitina, N., Finuk, N., Stoika, R., Zaichenko, A., and Ceylan, S.E., Biophysical study of novel oligoelectrolyte based non-viral gene delivery systems to mammalian cells, J. Gene Med., 2013, vol. 15, no. 5, pp. 193Ц204. https://doi.org/10.1002/jgm.2710

12. Filyak, Ye., Finiuk, N., Mitina, N., Bilyk, O., Titorenko, V., Hrydzhuk, O., Zaichenko, A., and Stoika, R., A novel method for genetic transformation of yeast cells using oligoelectrolyte polymeric nanoscale carriers, BioTechniques, 2013, vol. 54, no. 1, pp. 35Ц43. https://doi.org/10.2144/000113980

13. Finiuk, N., Chaplya, A., Mitina, N., Boiko, N., Lobachevska, O., Miahkota, O., Yemets, A., Blume, Ya., and Stoika, R., Genetic transformation of moss Ceratodon purpureus by means of polycationic carriers of DNA, Cytol. Genet., 2014, vol. 48, no. 6, pp. 345Ц351. https://doi.org/10.3103/S0095452714060048

14. Finiuk, N., Buziashvili, A., Burlaka, O., Zaichenko, A., Mitina, N., Miagkota, O., Lobachevska, O., Stoika, R., Blume, Ya., and Yemets, A., Investigation of novel oligoelectrolyte polymer carriers for their capacity of DNA delivery into plant cells, Plant Cell Tiss. Organ Cult., 2017, vol. 131, pp. 27Ц39. https://doi.org/10.1007/s11240-017-1259-7

15. von Gersdorff, K., Sanders, N.N., Vandenbroucke, R., De Smedt, S.C., Wagner, E., and Ogris, M., The internalization route resulting in successful gene expression depends on both cell line and polyethylene-minepolyplex type, Mol. Ther., 2006, vol. 14, no. 5, pp. 745Ц753. https://doi.org/10.1016/j.ymthe.2006.07.006

16. You, Y.Z., Manickam, D.S., Zhou, Q.H., and Oupický, D., Reducible poly(2-dimethylaminoethyl methacrylate): synthesis, cytotoxicity, and gene delivery activity, J. Control. Release, 2007, vol. 122, no. 3, pp. 217Ц225. https://doi.org/10.1016/j.jconrel.2007.04.020

17. Marslin, G., Sheeba, C.J., and Franklin, G., Nanoparticles alter secondary metabolism in plants via ROS burst, Front. Plant Sci., 2017, vol. 8, p. 832. https://doi.org/10.3389/fpls.2017.00832

18. Rao, S. and Shekhawat, G.S., Phytotoxicity and oxidative stress perspective of two selected nanoparticles in Brassica juncea, 3 Biotech, 2016, vol. 6, no. 2, p. 244. https://doi.org/10.1007/s13205-016-0550-3

19. Schallon, A., Jerome, V., Walther, A., Synatschke, C.V., Muller, A.H.E., and Freitag, R., Performance of three PDMAEMA-based polycation architectures as gene delivery agents in comparison to linear and branched PEI, React. Funct. Polym., 2010, vol. 70, no. 1, pp. 1Ц10. https://doi.org/10.1016/j.reactfunctpolym.2009.09.006

20. Voronov, S.A., Kiselyov, E.M., Minko, S.S., Budishevska, O.G., and Roiter, Y.V., Structure and reactivity of peroxide monomers, J. Polym. Sci. Pol. Chem., 1996, vol. 34, no. 12, pp. 2507Ц2511. https://doi.org/10.1002/(SICI)1099-0518(19960915)34:12<2507::AID-POLA24>3.0.CO;2-B

21. Paiuk, O., Mitina, N., Slouf, M., Pavlova, E., Finiuk, N., Kinash, N., Karkhut, A., Manko, N., Gromovoy, T., Hevus, O., Shermolovich, Y., Stoika, R., and Zaichenko, A., Fluorine-containing block/branched polyamphiphiles forming bioinspired complexes with biopolymers, Colloids Surf. B Biointerfaces, 2019, vol. 174, pp. 393Ц400. https://doi.org/10.1016/j.colsurfb.2018.11.047

22. Zaichenko A., Mitina, N., Shevchuk, O., Rayevska, K., Lobaz, V., Skorokhoda, T., and Stoika, R., Development of novel linear, block and branched oligoelectrolytes and functionally targeting nanoparticles, Pure Appl. Chem., 2008, vol. 80, no. 11, pp. 2309Ц2326. https://doi.org/10.1351/pac200880112309

23. Kirmse, W., Organic Elemental Analysis: Ultramicro, Micro, and Trace Methods, New York: Academic, 1983.

24. Critchfield, F.E., Organic Functional Group AnalysisЧInternational Series of Monographs on Analytical Chemistry, Pergamon Press, 1963.

25. Fiskesjo, G., Allium test, Methods Mol. Biol., 1995, vol. 43, pp. 19Ц127.

26. Cove, D., Perroud, P.F., Charron, A., McDaniel, S., Khandelwal, A., and Quatrano, R., The moss Physcomitrella patens. A novel model system for plant development and genomic studies, in Emerging Model Organisms, A Laboratory Manual, New York: Cold Spring Harbor Laboratory Press, 2009. https://doi.org/10.1101/pdb.emo115

27. Goth, L., A simple method for determination of serum catalase activity and revision of reference range, Clin. Chim., 1991, vol. 196, nos. 2Ц3, pp. 143Ц151. https://doi.org/10.1016/0009-8981(91)90067-M

28. Kumar, G. and Knowles, N.R., Changes in lipid peroxidation and lipolytic and free-radical scavenging enzyme activities during aging and sprouting of potato (Solanum tuberosum) seed-tubers, Plant Physiol., 1993, vol. 102, no. 1, pp. 115Ц124. https://doi.org/10.1104/pp.102.1.115

29. Rank, J. and Nielsen, M.H., A modified Allium test as a tool in the screening of the genotoxicity of complex mixtures, Hereditas, vol. 118, no. 1, pp. 49Ц53. https://doi.org/10.1111/j.1601-5223.1993.t01-3-00049.x

30. Kiełkowska, A., Allium cepa root meristem cells under osmotic (sorbitol) and salt (NaCl) stress in vitro,Acta Bot. Croat., 1993, vol. 76, no. 2, pp. 146Ц153. https://doi.org/10.1515/botcro-2017-0009

31. Mortelmans, K. and Zeiger, E., The Ames Salmonella/microsome mutagenicity assay, Mutat. Res., 2000, vol. 455, nos. 1Ц2, pp. 29Ц60. https://doi.org/10.1016/s0027-5107(00)00064-6

32. OECD Guideline for Testing of Chemicals: Bacterial Reverse Mutation Test, TG 471. Adopted July 1997. Available at chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/https://www.oecd.org/chemicalsafety/risk-assessment/1948418.pdf.

33. Yang, J., Cao, W., and Rui, Y., Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms, J. Plant Interact., 2017, vol. 12, no. 1, pp. 158Ц169. https://doi.org/10.1080/17429145.2017.1310944

34. Rajeshwari, A., Roy, B., Chandrasekaran, N., and Mukherjee, A., Cytogenetic evaluation of gold nanorods using Allium cepa test, Plant Physiol. Biochem., 2016, vol. 109, pp. 209Ц219. https://doi.org/10.1016/j.plaphy.2016.10.003

35. Shetty, A., Venkatesh, T., Suresh, P.S., and Tsutsumi, R., Exploration of acute genotoxic effects and antigenotoxic potential of gambogic acid using Allium cepa assay, Plant Physiol. Biochem., 2017, vol. 118, pp. 643Ц652. https://doi.org/10.1016/j.plaphy. 2017.08.005

36. Ahmed, B., Dwivedi, S., Abdin, M.Z., Azam, A., Al-Shaeri, M., Khan, M.S., Saquib, Q., Al-Khedhairy, A.A., and Musarrat, J., Mitochondrial and chromosomal damage induced by oxidative stress in Zn2+ ions, ZnO-bulk and ZnO-NPs treated Alliumcepa roots, Sci. Rep., 2017, vol. 7, p. 40685. https://doi.org/10.1038/srep40685

37. Lah, B., Zinko, B., Tisler, T., and Marinsek-Logara, R., Genotoxicity detection in drinking water by Ames test, Zimmermann test and Comet assay, Acta Chim. Slov., 2005, vol. 52, pp. 341Ц348.

38. McCarren, P., Springer, C., and Whitehead, L., An investigation into pharmaceutically relevant mutagenicity data and the influence on Ames predictive potential, J. Cheminform., 2011, vol. 3, p. 51. https://doi.org/10.1186/1758-2946-3-51

39. Lin, S., Du, F., Wang, Y., Li, S., Liang, D., Yu, L., and Li, Z., An acid-labile block copolymer of PDMAEMA and PEG as potential carrier for intelligent gene delivery systems, Biomacromolecules, 2008, vol. 9, no. 1, pp. 109Ц115. https://doi.org/10.1021/bm7008747

40. Sharma, R., Lee, J.-S., Bettencourt, R.C., Xiao, Ch., Konieczny, S.F., and Won, Y.-Y., Effects of the incorporation of a hydrophobic middle block into a PEG-polycation diblock copolymer on the physicochemical and cell interaction properties of the polyer-DNA complexes, Biomacromolecules, 2008, vol. 9, no. 1, pp. 3294Ц3297. https://doi.org/10.1021/bm800876v

41. Pirotton, S., Muller, C., Pantoustier, N., Botteman, F., Collinet, S., Grandfils, C., Dandrifosse, G., Degée, P., Dubois, P., and Raes, M., Enhancement of transfection efficiency through rapid and noncovalent post-PEGylation of poly(dimethylaminehtylmethacrlyate)/DNA complex, Pharm. Res., 2004, vol. 21, no. 8, pp. 1471Ц1479. https://doi.org/10.1023/b:pham.0000036923.25772.97

42. Hong, J., Peralta-Videa, J.R., Rico, C., Sahi, S., Viveros, M.N., Bartonjo, J., Zhao, L., and Gardea-Torresdey, J.L., Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants, Environ. Sci. Technol., 2014, vol. 48, no. 8, pp. 4376Ц4385. https://doi.org/10.1021/es404931g

43. Song, U. and Lee, E.J., Ecophysiological responses of plants after sewage sludge compost applications, J. Plant Biol., 2010, vol. 53, pp. 259Ц267. https://doi.org/10.1007/s12374-010-9112

44. Garg, N., and Manchanda, G., ROS generation in plants: boon or bane? Plant Biosyst., 2009, vol. 143, pp. 81Ц96. https://doi.org/10.1080/11263500802633626

45. Kenneth, W.A., Advanced Techniques in Chromosome Research, CRC Press, 1991.

Copyright© ICBGE 2002-2021 Coded & Designed by Volodymyr Duplij Modified 29.11.21