ISSN 0564-3783  

Main page
Information to authors
Editorial board
Mobile version

In Ukrainian

Export citations

Epigenetics changes of activity of the ribosomal cistrons of acrocentric chromatids in fetus, middle age (2540 years) andold individuals (88106 years)

Lezhava T., Buadze T., Monaselidze J., Jokhadze T., Sigua N., Jangulashvili N., Gaiozishvili M., Koridze M., Zosidze N., Rukhadze M.


SUMMARY. The level of total heterochromatin, Ag-positive nucleolar organizer regions (NORs), non-associated and associated heterochromatin satellite stalks of acrocentric chromatids (some acrocentric chromosomal chromatid satellite stalks are connected to each other forming a satellite association), the intensity of each acrocentric chromatid involved in the association were studied in 29 fetuses, 32 healthy 2245-year-old individuals (middle-aged) and 22 healthy 80106-year-old individuals. The chromosomes were identified by the analysis of G-banding, using the Ikaros karyotyping system (Meta system). The differential scanning calorimeter showed an increase in chromatin thermostability (heterochromatinization) in adults (middle-aged and elderly) compared with fetuses. The number of Ag-positive NORs per cell, for both associated and non-associated chromatids, was significantly increased in fetus cells compared to middle age and to extreme old age. The number of satellite associations of chromatids per cell in the fetus and in individuals of the senile group was reduced, compared with middle-aged individuals. The activity of entering the chromatid associations was significantly lower for 15th chromosome in all the studied groups compared to other acrocentric chromatids, while the chromatids of the 21st chromosome participated in associations with high activity. The frequency of associations of homologous chromosome chromatids (13:13; 14:14; 15:15 and 22:22) and of certain types of chromosome chromatids (15:22 and 21:22) in the fetus, middle-aged individuals and in the senile group was almost identical. The above phenomena seem to indicate that the ribosomal genes of chromatid satellite stalks undergo a specific epigenetic variability depending on the age, determining specific rRNA syntheses for the construction of specific ribosomes which may have great importance in assessing the overall functioning of cells in normal and pathological conditions.

Key words: Aging, Association, Heterochromatinization, Fetuses, Ribosomal genes, Satellite stalks

Tsitologiya i Genetika 2020, vol. 54, no. 3, pp. 69-80

  1. Deprtment of Genetics, Iv. Javakhishvili Tbilisi State University, Tchavtchavadze ave.1, Tbilisi 0128, Georgia
  2. Institute of Physics; Institute of Genetics, Iv. Javakhishvili Tbilisi State University, Tchavtchavadze ave.1,Tbilisi 0128, Georgia
  3. Perinatology Centre of Prenatal Diagnosis; Gorgasalist. 93, Tbilisi,Georgia
  4. Shota Rustaveli Batumi State University, Ninoshvili st. 35, Batumi, Georgia

E-mail: lezhavat, jamlet_monaselidze, sigua_nino, koridzemarina

Lezhava T., Buadze T., Monaselidze J., Jokhadze T., Sigua N., Jangulashvili N., Gaiozishvili M., Koridze M., Zosidze N., Rukhadze M. Epigenetics changes of activity of the ribosomal cistrons of acrocentric chromatids in fetus, middle age (2540 years) andold individuals (88106 years), Tsitol Genet., 2020, vol. 54, no. 3, pp. 69-80.

In "Cytology and Genetics":
T. Lezhava, T. Buadze, J. Monaselidze, T. Jokhadze, N. Sigua, N. Jangulashvili, M. Gaiozishvili, M. Koridze, N. Zosidze & M. Rukhadze Epigenetic Changes of Activity of the Ribosomal Cistrons of Human Acrocentric Chromatids in Fetuses, Middle-aged (2245 years) and Old Individuals (80106 years), Cytol Genet., 2020, vol. 54, no. 3, pp. 233242
DOI: 10.3103/S009545272003007X


1. Bártová, E., Harničarová, Horáková, A., Uhlířová, R., Raška, I., Galiová, G., Orlova, D., and Kozubek, S., Structure and epigenetics of nucleoli in comparison with non-nucleolar compartments, J. Histochem. Cytochem., 2010, vol. 58, no. 5, pp. 391403.

2. Lyapunova, N., and Veiko, N., Ribosomal genes in the human genome: identification of four fractions, their organization in the nucleolus and metaphase chromosomes, Genetika, 2010, vol. 46, no. 9, pp. 12051209.

3. Dimitrova, D., DNA replication initiation patterns and spatial dynamics of the human ribosomal RNA gene loci, J. Cell Sci., 2011, vol. 16, pp. 27432752.

4. Schmitz, K., Schmitt, N., Hoffmann-Rohrer, U., Schfer, A., Grummt, I., and Mayer, Ch., TAF12 recruits Gadd45a and the nucleotide excision repair complex to the promoter of rRNA genes leading to active DNA demethylation, Mol. Cell, 2009, vol. 33, pp. 344353.

5. Mazin, A., Suicidal function of DNA methylation in age-related genome disintegration, Ageing Res. Rev., 2009, vol. 8, no. 4, pp. 314327.

6. McStay, B. and Grummt, I., The epigenetics of rRNA genes: from molecular to chromosome biology, Ann. Rev. Cell. Dev. Biol., 2008, vol. 24, pp. 131157.

7. Lezhava, T., Monaselidze, J., Jokhadze, T., and Gaiozishvili, M., Epigenetic Regulation of age heterochromatin by peptide bioregulator cortagen, Int. J. Pept. Res. Ther., 2015, vol. 21, pp. 157163.

8. Lezhava, T., Jokhadze, T., Monaselidze, J., The functioning of aged heterochromatin, in Senescence, Intech Open Science, 2012, chapter 26, pp. 631646. ISBN 978-953-51-0144-4.

9. Kikalishvili, L., Ramishvili, M., Nemsadze, G., Lezhava, T., Khorava, P., Gorgoshidze, M., Kiladze, M., and Monaselidze, J., Thermal stability of blood plasma proteins of breast cancer patients, DSC study, J. Therm. Anal. Calorim., 2015, vol. 120, no. 1, pp 501505.

10. Kobzar, A.I., Applied Mathematical Statistics. For Engineers and Scientists, Moscow: Fizmatlit, 2006.

11. Olson, M., The Nucleolus, Springer Sci. LTC, 2011.

12. Tiku, V. and Antebi, A., Nucleolar Function in life span regulation, Trends Cell Boil., 2018, vol. 28, no. 8, pp. 662672.

13. Xu, B., Li, H., Perry, J., Singh, V.P., Unruh, J., Yu, Z., Zakari, M., McDowell, W., Li, L., and Gerton, J.L., Ribosomal DNA copy number loss and sequence variation in cancer, PLoS Genet., 2017, vol. 13, no. 6, e1006771.

14. Kim, J., Dilthey, A., Nagaraja, R., Lee, H.-Sh., Koren, S., Dudekula, D., Wood III, W.H., Piao, Y., Ogurtsov, A.Y., Utani, K., Noskov, V.N., Shabalina, S.A., Schlessinger, D., Phillippy, A.M., and Larionov, V., Variation in human chromosome 21 ribosomal RNA genes characterized by TAR cloning and long-read sequencing, Nucleic Acids Res., 2018, vol. 46, pp. 67126725.

15. Parks, M., Kurylo, C., Dass, R., Bojmar, L., Lyden, D., Vincent, C.Th., and Blanchard, S.C., Variant ribosomal RNA alleles are conserved and exhibit tissue-specific expression, Sci. Adv., 2018, vol. 4, no. 2, eaao0665.

16. Porokhovnik, L. and Gerton, J., Ribosomal DNA-connecting ribosome biogenesis and chromosome biology, Chromosome Res., 2019, vol. 27, no. 12, pp. 13.

17. Villicaca, C., Cruz, G., and Zurita, M., The basal transcription machinery as a target for cancer therapy, Cancer Cell Int., 2014, vol. 14, no. 1, p. 18.

18. Dai, M., Zeng, S., Jin, Y., Sun, X.X., David, L., and Lu, H., Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition, Mol. Cell, 2011, vol. 40, pp. 216227.

19. Nćmeth, A. and Längst, G., Genome organization in and around the nucleolus, Trends Genet., 2011, vol. 27, no. 4, pp 149156.

20. Hirota, K., Miyoshi, T., Kugou, K., Hoffman, C., Shibata, T., and Ohta, K., Stepwise chromatin remodeling by a cascade of transcription initiation of non-coding RNA, Nature, 2008, vol. 456, pp.130134.

21. Salminen, A. and Kaarniranta, K., SIRT1 regulates the ribosomal DNA locus: epigenetic candles twinkle longevity in the Christmas tree, Biochem. Biophys. Res. Commun., 2009, vol. 378, no. 1, pp. 69. doi 10.1016/j.bbrc.2008.11.023

22. Lemos, B., Araripe, L., and Hartl, D., Polymorphic Y chromosomes harbor cryptic variation with manifold functional consequences, Science, 2008, vol. 319, no. 5859, pp. 9193.

23. Boulon, S., Westman, B., Hutten, S., Boisvert, F.M., and Lamond, A.I., The nucleolus under stress, Mol. Cell., 2010, vol. 40, no. 2, pp. 216227.

24. Donati, G., Montanaro, L., and Derenzini, M., Ribosome biogenesis and control of cell proliferation: p53 is not alone, Cancer Res., 2012, vol. 72, no. 7, pp. 16021607.

25. Caudron-Herger, M., Pankert, T., Seiler, J., Nćmeth, A., Voit, R., Grummt, I., and Rippe, K., Alu element-containing RNAs maintain nucleolar structure and function, EMBO J., 2015, vol. 34, no. 22, pp. 27582774.

26. Cong, R., Das, S., Ugrinova, I., Kumar, S., Mongelard, F., Wong, J., and Bouvet, Ph., Interaction of nucleolin with ribosomal RNA genes and its role in RNA polymerase 1 transcription, Nucleic Acids Res., 2012, vol. 40, no. 19, pp. 94419454.

27. Barsaglieri, C. and Santoro, R., Genome organization in and around the nucleolus, Cells, 2019, vol. 8, no. 6, pii: E579.

28. Caudron-Herger, M., Diederichs, S., Mitochondrial mutations in human cancer: curation of translation, RNA Biol., 2018, vol. 15, no. 1, pp. 629.

29. Allshire, R. and Madhani, H., Ten principles of heterochromatin formation and function, Nat. Rev. Mol. Cell Biol., 2018, vol. 19, no. 4, pp. 229244.

30. Baranov, V. and Kuznecova, T., Cytogenetics of Human Embryonic Development, St. Petersburg: Nauka, 2006.

31. Mayer, C. and Grummt, I., Ribosome biogenesis and cell growth: mTOR coordinates transcription by all three classes of nuclear RNA polymerases, Oncogene, 2006, vol. 25, no. 48, pp. 63846391.

Copyright© ICBGE 2002-2023 Coded & Designed by Volodymyr Duplij Modified 05.12.23