TSitologiya i Genetika 2020, vol. 54, no. 1, 3-15
Cytology and Genetics 2020, vol. 54, no. 1, 1–9, doi: https://www.doi.org/10.3103/S0095452720010090

Assessment of genetic and reproductive state of Ulmus pumila and U. Suberosa invasive populations in the dnieper steppe to climat change

Kravets O.A., Pirko Ya.V., Kalafat L.O., Rabokon A.M., Postovoitova A.С., Bilonozhko Yu.O., Privalikhin S.M., Lykholat Yu.V., Blume Ya.B.

  1. Institute of Food Biotechnology and Genomics of NAS of Ukraine, 04123, Kyiv, vul. Osypovskoho, 2a
  2. Oles Honchar Dniprovsky National University, Ukraine, 49000, Dnipro, Gagarin ave., 72

SUMMARY. The degree of interspecific genetic polymorphism and heterozygosity, embryonic death and seed viability, as well as the cytogenetic state of the Ulmus pumila and U. suberosa vegetative meristems were studied to determine the mechanisms of invasiveness of their populations in the Dnieper steppe under conditions of climate change. The U. pumila populations differed on indexis of the embryonic death, seed viability and seed productivity. Populations growing in more favorable environmental conditions are distinguished by a better reproductive, physiological, and genetic conditions. For the vast majority of used microsatellite loci, the studied populations were characterized by a relatively low level of genetic variability, an excessive homozygous genotype and a deficit of heterozygotes, which indicates a certain level of inbreediness of the analyzed plants. The largest heterozygous deficiency is found in the population of U. pumila with a high density of trees and significant rates of on seed embryonic death; a smaller deficit is in populations with a relatively large area and low density of plantations and, consequently, low rates of embryonic death. The low index of chromosomal rearrangements in vegetative meristems also confirms the insignificant level of genetic variability, the probable absence of hybridization and genetic homeostasis in U. pumila. The U. suberosa population was characterized by increased embryo death, seed damage, and low seed production which correlated with an excessive homozygous genotype. All studied U. suberosa samples on microsatellite loci were monomorphic. Generally, according to genetic and reproductive indicators, seed reproduction and expansion of U. pumila in the Dnieper steppe in conditions of climate change are not significantly limited. At the same time the seed reproduction and expansion of U. suberosa can be limited.

Keywords: Ulmus pumila, U. suberosa, invasive populations, seed embryonic death, empty samara (parthenocarpy), heterozygosity, chromosomal rearrangements, Dnieper steppe

TSitologiya i Genetika
2020, vol. 54, no. 1, 3-15

Current Issue
Cytology and Genetics
2020, vol. 54, no. 1, 1–9,
doi: 10.3103/S0095452720010090

Full text and supplemented materials

References

1. Forrest, J. and Miller-Rushing, A.J., Toward a synthetic understanding of the role of phenology in ecology and evolution, Phil. Trans. R. Soc. Lond. B Biol. Sci., 2010, vol. 365, no. 1555, pp. 3101–3112. https://doi.org/10.1098/rstb.2010.0145

2. Lurgi, M., Wells, K., Kennedy, M., Campbell, S., and Fordham, D.A., A Landscape approach to invasive species management, PLoS One, 2016, vol. 11, no. 7, pp. 1–20. https://doi.org/10.1371/journal.pone.0160417

3. Lopez-Almansa, J.C., Review. Reproductive ecology of riparian elms, Invest. Agrar.: Sist. Recur. For., 2004, vol. 13, no. 1, pp. 17–27.

4. Lopez-Almansa, J.C., Yeung, E.C., and Gil, L., Abortive seed development in Ulmus minor Mill. (Ulmaceae), Bot. J. Linn. Soc., 2004, vol. 145, no. 4, pp. 455–467.https://doi.org/10.1111/j.1095-8339.2004

5. Streng, D.R., Glitzenstein, J.S., and Harcombe, P.A., Woody seedling dynamics in an east Texas floodplain, Ecol. Monogr., 1989, vol. 59, pp. 177–204.

6. Perea, R., Venturas, M., and Gil, L., Empty seeds are not always bad: simultaneous effect of seed emptiness and masting on animal seed predation, PLoS One, 2013, vol. 8, no. 6, pp. 1–9. https://doi.org/10.1371/journal.pone.0065573

7. Sakai, A.K., Allendorf, F.W., Holt, J.S., Lodge, D.M., Molofsky, J., With, K.A., Baughman, S., Cabin, R.J., Cohen, J.E., Ellstrand, N.C., McCauley, D.E., O’Neil, P., Parker, I.M., Thompson, J.N., and Weller, S.G., The population biology of invasive species, Annu. Rev. Ecol. Syst., 2001, vol. 32, pp. 305–332. https://doi.org/10.1146/annurev.ecolsys.32.081501.114037

8. Zalapa, J.E., Brunet, J., and Guries, R.P., The extent of hybridization and its impact on the genetic diversity and population structure of an invasive tree, Ulmus pumila (Ulmaceae), Evol. Appl., 2010, vol. 3, no. 2, pp. 157–68. https://doi.org/10.1111/j.1752-4571.2009.00106.x

9. Lopez-Almansa, J.C. and Gil, L., Empty samara and parthenocarpy in Ulmus minor s. l., Silvae Genet., 2003, vol. 52, pp. 241–243.

10. Venturas, M., Fuentes-Utrilla, P., Ennos, R., Collada, C., and Gil, L., Human induced changes on fine-scale genetic structure in Ulmus laevis Pallas wetland forests at its SW distribution limit, Plant Ecol., 2013, vol. 214, no. 2, pp. 317–327.https://doi.org/10.1007/s11258-013-0170-5

11. Santamour, F.S.Jr. and Ware, G.H., Chromosome numbers of new Ulmus (elm) taxa introduced from China. Rhodora, 1997, vol. 99, pp. 148–151.

12. Chromosome Numbers of Flowering Plants (Directory), Leningrad: Science, Leningrad Sep., 1969.

13. Hirsch, H., Brunet, J., Zalapa, J.E., and von Wehrden, H., Intra- and interspecific hybridization in invasive Siberian elm, Biol. Invasions, 2017, vol. 19, no. 6, pp. 1889–1904. https://doi.org/10.1007/s10530-017-1404-6

14. Sambrook, J. and David, W.R., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor, 2001.

15. Zalapa, J.E., Brunet, J., and Guries, R.P., Patterns of hybridization and introgression between invasive Ulmus pumila (Ulmaceae) and native U. rubra,Am. J. Bot., 2009, vol. 96, no. 6, pp. 1116–1128. https://doi.org/10.3732/ajb.0800334

16. Zalapa, J.E., Brunet, J., and Guries, R.P., Isolation and characterization of microsatellite markers for red elm (Ulmus rubra Muhl.) and cross-species amplification with Siberian elm (Ulmus pumila L.), Mol. Ecol. Resour., 2008, no. 8, pp. 109–112. https://doi.org/10.1111/j.1471-8286.2007.01805.x

17. Lazar, I., GelAnalyzer.com [homepage on the Internet], 2010. http://www.gelanalyzer.com/.

18. Kelly, D. and Sork, V., Mast seeding in perennial plants: why, how, where?, Ann. Rev. Ecol. Syst., 2002, vol. 33, pp. 427–447. https://doi.org/10.1146/annurev.ecolsys.33.020602.095433

19. Oficerov, M.V. and Igonina, E.V., Genetic nonsequences radiation exposure of the Scots pine (Pinus sylvestris L.), Genetics, 2009, vol. 45, no. 2, pp. 209–214.

20. Bob, C.F., Redmond, B.L., and Karnosky, D.F., on the nature of intra-and interspecific incompatibility in Ulmus,Am. J. Bot., 1986, vol. 73, no. 4, pp. 465–474.

21. Santamour, F.S., Jr. A natural hybrid between American and Siberian elms (Ulmus americana, Ulmus pumila), Forest Sci., 1970, vol. 16, pp. 149–153.

22. Elowsky, C.G., Jordon-Thaden, I.E., and Kaul, R.B., A morphological analysis of a hybrid swarm of native Ulmus rubra Muhl. and introduced U. pumila L. (Ulmaceae) in southeastern Nebraska, Phytoneuron, 2013, vol. 44, pp. 1–23.

23. Silvertown, J.W., The evolutionary ecology of mast seeding in trees, Biol. J. Linn. Soc., 1980, vol. 14, pp. 235–250.

24. Bozhkov, P.V., Filonova, L.H., and Suarez, M.F., Programmed cell death in plant embryogenesis, Curr. Top. Dev. Biol., 2005, vol. 67, pp. 135–179.

25. Filonova, L.H., von Arnold, S., Daniel, G., and Bozhkov, P.V., Programmed cell death eliminates all but one embryo in a polyembryonic plant seed, Cell Death Diff., 2002, vol. 9, no. 10, pp. 1057–1062.

26. Zalapa, J.E., Brunet, J., and Guries, R.P., Genetic diversity and relationships among Dutchelm disease tolerant Ulmus pumila L. accessions from China, Genome, 2008b, no. 51, pp. 492–500. https://doi.org/10.1139/G08-034

27. Zalapa, J.E., Brunet, J., and Guries, R.P., Isolation and characterization of microsatellite markers for red elm (Ulmus rubra Muhl.) and cross-species amplification with Siberian elm (Ulmus pumila L.), Mol. Ecol., 2008, no. 8, pp. 109–112.

28. Pirko, Ya.V., Kalafat, L.O., Pirko, N.M., Rabokon, A.N., Privalikhin, S.N., Demkovych, A.Ye., Bilonozhko, Yu.O., Kravets, O.A., Alexeyeva, A.A., Khromykh, N.O., and Lykholat, Yu.V., Intron length polymorphism of β-tubulin genes in Ulmus pumila L. plants in the Steppe Prydniprov’yia, Visn. Ukr. Tovar. Genet. Selekts., 2018, vol. 16, no. 1, pp. 28–34.

29. Nielsen, L.R. and Kjr, E.D., Gene flow and mating patterns in individuals of Wych elm (Ulmus glabra) in forest and open land after the influence of Dutch elm disease, Conserv. Genet., 2010, no. 11, pp. 257–268.