TSitologiya i Genetika 2020, vol. 54, no. 3, 16-27
Cytology and Genetics 2020, vol. 54, no. 3, 189–198, doi: https://www.doi.org/10.3103/S0095452720030044

Climate factors and Wolbachia infection frequencies in natural populations of Drosophila melanogaster

Gora N.V., Serga S.V., Maistrenko O.M., Slezak-Parnikoza A., Parnikoza I.Y., Tarasiuk A.N., Demydov S.V., Kozeretska I.A.

  1. Taras Shevchenko National University of Kyiv, Ukraine, Kyiv, 01601, Volodymyrska street, 60
  2. European Molecular Biology Laboratory, Germany, Heidelberg, 69117, Meyerhofstrasse, 1
  3. Local group for Wolf protection on Elbląg Upland, Poland, Warmian-Masurian Voivodeship, 82-340, Tolkmicko, Brzezina, 2a
  4. State Institution National Antarctic Scientific Center, MES of Ukraine, Ukraine, Kyiv, 01601,
    Taras Shevchenko boulevard, 16
  5. Brest State A.S. Pushkin University, Republic
    of Belarus, Brest, 224016, Cosmonautov boulevard, 21

The endosymbiotic bacteria Wolbachia are widespread in the natural populations of Drosophila melanogaster, a cosmopolitan and synanthropic species. Various aspects of Wolbachia infection are studied in many arthropod species including fruit fly. However, the influence of climatic factors on the level of Wolbachia infection in natural populations of fruit fly has not been studied in detail. We investigated the influence of mean temperature, precipitation, and potential evaporation on Wolbachia infection rates in the D. melanogaster populations. We combined newly obtained estimates of Wolbachia infection rates for 10 D. melanogaster populations of Europe with data from other articles for different continents from different climatic zones (280 populations – 1,086 isofemale lines). The influence of climatic factors on the frequency of infection was established. The highest infection levels are observed in the range of 20–25 ºC mean annual temperature, which corresponds to rearing conditions of the flies in the laboratory. Cline of levels of Wolbachia infection in the Eurasian fruit flies’ populations was found. Also, climatic factors have a more significant impact on bacterial infection levels in logistic regression models for climatic zones than for continents.

Keywords: Wolbachia, Drosophila melanogaster, endosymbiosis, climate factors

TSitologiya i Genetika
2020, vol. 54, no. 3, 16-27

Current Issue
Cytology and Genetics
2020, vol. 54, no. 3, 189–198,
doi: 10.3103/S0095452720030044

Full text and supplemented materials

References

1. O’Neill, S.L., Werren, J.H., and Hoffmann, A.A., Influential Passengers: Inherited Microorganisms and Arthropod Reproduction, Oxford University Press, 1997.

2. Teixeira, L., Ferreira, A., and Ashburner, M., The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster,PLoS Biol., 2008, vol, 6, no. 12, e1000002.

3. Serga, S., Maistrenko, O., Rozhok, A., Mousseau, T., and Kozeretska, I., Fecundity as one of possible factors contributing to the dominance of the wMel genotype of Wolbachia in natural populations of Drosophila melanogaster,Symbiosis, 2014, vol. 63, no. 1, pp. 11–17.

4. Hoffmann, A.A., Clancy, D.J., and Merton, E., Cytoplasmic incompatibility in Australian populations of Drosophila melanogaster,Genetics, 1994, vol. 136, no. 3, pp. 993–999.

5. Riegler, M., Sidhu, M., Miller, W.J., and O’Neill, S.L., Evidence for a global Wolbachia replacement in Drosophila melanogaster, Curr. Biol., 2005, vol. 15, no. 15, pp. 1428–33.

6. Ilinsky, Y.Y. and Zakharov, I.K., The endosymbiont Wolbachia in Eurasian populations of Drosophila melanogaster,Russ. J. Genet., 2007, vol. 43, no. 7, pp. 748–756.

7. Richardson, M.F., Weinert, L.A., Welch, J.J., Linheiro, R.S., Magwire, M.M., Jiggins, F.M., and Bergman, C.M., Population genomics of the Wolbachia endosymbiont in Drosophila melanogaster, PLoS Genet., 2012, vol. 8, no. 12, e1003129.

8. Kriesner, P., Conner, W.R., Weeks, A.R., Turelli, M., and Hoffmann, A.A., Persistence of a Wolbachia infection frequency cline in Drosophila melanogaster and the possible role of reproductive dormancy, Evolution, 2016, vol. 70, no. 5, pp. 979–997.

9. Serga, S.V. and Kozeretskaya, I.A., The puzzle of Wolbachia spreading out through natural populations of Drosophila melanogaster,Zh. Obshch. Biol., 2013, vol. 74, no. 2, pp. 99–111.

10. Corbin, C., Heyworth, E.R., Ferrari, J., and Hurst, G.D., Heritable symbionts in a world of varying temperature, Heredity, 2017, vol. 118, no. 1, p. 10–20.

11. Iturbe-Ormaetxe, I., Walker, T., and O’Neill, S.L., Wolbachia and the biological control of mosquito-borne disease, EMBO Rep., 2011, vol. 12, no. 6, pp. 508–518.

12. Rubel, F., Brugger, K., Haslinger, K., and Auer, I., The climate of the European Alps: shift of very high resolution Köppen–Geiger climate zones 1800–2100, Meteorologische Zeitschrift, 2017, vol. 26, no. 2, pp. 115–25. doi 10,1127/metz/2016/0816

13. O’Neill, S.L., Giordano, R., Colbert, A.M., Karr, T.L., and Robertson, H.M., 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects, Proc. Natl. Acad. Sci. U. S. A., 1992, vol. 89, no. 7, pp. 2699–2702.

14. Zhou, W., Rousset, F., and O’Neill, S., Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences, Proc. R. Soc. London, Ser. B, 1998, vol. 265, no. 1395, pp. 509–515.

15. Team, R.C., R: A Language and Environment for Statistical Computing, 2018.

16. Gora, N.V., Kostenko, N.D., Maistrenko, O.M., Serga, S.V., and Kozeretska, I.A., The lack of correlation between the level of radioactive contamination and infection with Wolbachia in natural populations of Drosophila melanogaster from Ukraine, J. V.N. Karazin Kharkiv Nat. Univ. Ser. Biol., 2016, vol. 26, pp. 60–64.

17. Gora, N.V., Serga, S.V., Maistrenko, O.M., Protsenko, O.V., and Kozeretska, I.A., The relationship of Wolbachia infection and different phenotypes in the Drosophila melanogaster natural populations from radioactively polluted and clear areas in Ukraine, Visn. Ukr. Tov. Genet. Sel., 2018, vol. 16, no. 2, pp. 227–234.

18. Gora, N.V., Serga, S.V., Maistrenko, O.M., and Kozeretska, I.A., Dynamics of frequencies of Wolbachia genotypes in Drosophila melanogaster population from Uman’ under influence of climate factors, Microbiol. Biotechnol., 2019, vol. 1, pp. 6–15.

19. Hoffmann, A.A., Hercus, M., and Dagher, H., Population dynamics of the Wolbachia infection causing cytoplasmic incompatibility in Drosophila melanogaster,Genetics, 1998, vol. 148, no. 1, pp. 221–231.

20. Montenegro, H., Solferini, V.N., Klaczko, L.B., and Hurst, G.D.D., Male-killing Spiroplasma naturally infecting Drosophila melanogaster,Insect. Mol. Biol., 2005, vol. 14, no. 3, pp. 281–287.

21. Verspoor, R.L., Haddrill, P.R., Genetic diversity, population structure and Wolbachia infection status in a worldwide sample of Drosophila melanogaster and D. simulans populations, PLoS One, 2011, vol. 6, no. 10, e26318.

22. Ventura, I.M., Martins, A.B., Lyra, M.L., Andrade, C.A., Carvalho, K.A., and Klaczko, L.B., Spiroplasma in Drosophila melanogaster populations: prevalence, male-killing, molecular identification, and no association with Wolbachia,Microb. Ecol., 2012, vol. 64, no. 3, pp. 794–801.

23. Early, A.M., Clark, A.G., Monophyly of Wolbachia pipientis genomes within Drosophila melanogaster: geographic structuring, titre variation and host effects across five populations, Mol. Ecol., 2013, vol. 22, no. 23, pp. 5765–5778.

24. Huang, W., Massouras, A., Inoue, Y., Peiffer, J., Ramia, M., Tarone, A.M., and Magwire, M.M., Natural variation in genome architecture among 205 Drosophila melanogaster Genetic Reference Panel lines, Genome Res., 2014, vol. 24, no. 7, pp. 1193–1208.

25. Webster, C.L., Waldron, F.M., Robertson, S., Crow-son, D., Ferrari, G., Quintana, J.F., and Lazzaro, B.P., The discovery, distribution, and evolution of viruses associated with Drosophila melanogaster,PLoS Biol., 2015, vol. 13, no. 7, e1002210.

26. Bykov, R.A., Yudina, M.A., Gruntenko, N.E., Zakharov, I.K., Voloshina, M.A., Melashchenko, E.S., and Ilinsky, Y.Y., Prevalence and genetic diversity of Wolbachia endosymbiont and mtDNA in Palearctic populations of Drosophila melanogaster,BMC Evol. Biol., 2019, vol. 19, no. 1, p. 48.

27. Roshina, N., Symonenko, A., Krementsova, A., Tsybul’ko, E.A., Alatortsev, V.E., Pasyukova, E.G., and Mukha, D., Drosophila melanogaster inhabiting northern regions of European Russia are infected with Wolbachia which adversely affects their life span, Vavilov J. Genet. Breed., 2018, vol. 22, no. 5, pp. 568–573.

28. Harris, I.P.D.J., Jones, P.D., Osborn, T.J., and Lister, D.H., Updated high-resolution grids of monthly climatic observations—the CRU TS3,10 Dataset, Int. J. Climatol., 2014, vol. 34, no. 3, pp. 623–642.

29. Hijmans, R.J., Raster: Geographic Data Analysis and Modeling, 2019.

30. Pierce D., ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files, 2019.

31. Charlesworth, J., Weinert, L.A., Araujo-Jnr, E.V., and Welch, J.J., Wolbachia, Cardinium and climate: an analysis of global data, bioRxiv, 2018, vol. 490284.

32. Dillon, M.E., Wang, G., Garrity, P.A., and Huey, R.B., Review: thermal preference in Drosophila,Therm. Biol., 2009, vol. 34, no. 3, pp. 109–119.

33. Truitt, A.M., Kapun, M., Kaur, R., and Miller, W.J., Wolbachia modifies thermal preference in Drosophila melanogaster, Environ. Microbiol., 2018.

34. Perrot-Minnot, M.J., Guo, L.R., and Werren, J.H., Single and double infections with Wolbachia in the parasitic wasp Nasonia vitripennis effects on compatibility, Genetics, vol. 143, no. 2, pp. 961–972.

35. Rahimi-Kaldeh, S., Ashouri, A., Bandani, A., and Tomioka, K., The effect of Wolbachia on diapause, fecundity, and clock gene expression in Trichogramma brassicae (Hymenoptera: Trichogrammatidae), Dev. Genes Evol., 2017, vol. 227, no. 6, pp. 401–410.

36. Ruang-Areerate, T., Kittayapong, P., McGraw, E.A., Baimai, V., and O’Neill, S.L., Wolbachia replication and host cell division in Aedes albopictus,Curr. Microbiol., 2004, vol. 49, no. 1, pp. 10–12.

37. Nunes, M.D., Nolte, V., and Schlutterer, C, Non-random Wolbachia infection status of Drosophila melanogaster strains with different mtDNA haplotypes, Mol. Biol. Evol., 2008, vol. 25, no. 11, pp. 2493–2498.

38. Ilinsky, Y., Coevolution of Drosophila melanogaster mtDNA and Wolbachia genotypes, PLoS One, 2013, vol. 8, no. 1, pp. 1–11.