TSitologiya i Genetika 2020, vol. 54, no. 1, 62-70
Cytology and Genetics 2020, vol. 54, no. 1, 48–54, doi: https://www.doi.org/10.3103/S0095452720010028

Bcr-Abl oncoprotein interacts with GLG1 in K562 cells: role in pathogenesis of chronic myeloid leukemia

Antonenko S.V., Kravchuc I.V., Telegeev G.D.

  • Institute of Molecular Biology and Genetics NAS of Ukraine, Kyiv

SUMMARY. Chronic Myeloid Leukemia (CML) is a clonal myeloproliferative disease characterized by the appearance of a hybrid Bcr-Abl oncoprotein as a result of reciprocal translocation between chromosomes 9 and 22. GLG1 protein was identified as a potential partner for interaction with the PH domain of the Bcr-Abl oncoprotein by mass spectrometric analysis. GLG1 protein is a transmembrane protein, also known as MG-160, ESL-1, CFR-1. Disruption in the functioning of the GLG1 protein affects adhesion, mobility, and migration of cells. In our work, we first demonstrated the interaction of the GLG1 protein and Bcr-Abl oncoprotein. Using immunofluorescent analysis and confocal microscopy, we detected colocalization of GLG1 protein and Bcr-Abl oncoprotein in the Golgi complex. We also detected thyrosine phosphorylated form of the GLG1 protein in K562 cells and predicted Tyr phosphorylation sites for isoforms of GLG1 protein. We believe that during the interaction of GLG1 and Bcr-Abl proteins in the Golgi complex, oncoprotein phosphorylates the GLG1 protein due to its Abl part, thus affecting its activity and disrupting the downstream signaling pathways that may be critical for the development and progression of the disease.

Keywords: Chronic Myeloid Leukemia (CML), Bcr-Abl oncoprotein, Golgi Glycoprotein 1 (GLG1), Golgi complex, К562 cell

TSitologiya i Genetika
2020, vol. 54, no. 1, 62-70

Current Issue
Cytology and Genetics
2020, vol. 54, no. 1, 48–54,
doi: 10.3103/S0095452720010028

Full text and supplemented materials


1. Salem, A., Loghavi, S., Tang, G., Huh, Y.O., Jabbour, E.J., Kantarjian, H., Wang, W., Hu, S., Luthra, R., Medeiros, L.J., and Khoury, J.D., Myeloid neoplasms with concurrent BCR-ABL1 and CBFB rearrangements: a series of 10 cases of a clinically aggressive neoplasm, Am. J. Hematol., 2017, vol. 92, no. 6, pp. 520–528.https://doi.org/10.1002/ajh.24710

2. Flis, S. and Chojnacki, T., Chronic myelogenous leukemia, a still unsolved problem: pitfalls and new therapeutic possibilities, Drug. Design. Dev. Ther., 2019, vol. 13, pp. 825–843. https://doi.org/10.2147/DDDT.S191303

3. Telegeev, G.D., Dubrovska, V.A., Nadgorna, V.A., Dybkov, M.V., Zavelevich, M.P., Maliuta, S.S., and Gluzman, D.F., Immunocytochemical study of Bcr and Bcr-Abl localization in K562 cells, Exp. Oncol., 2010, vol. 32, no. 2, pp. 81–83.

4. Quintás-Cardama, A. and Cortes, J., Molecular biology of bcr-abl1-positive chronic myeloid leukemia, Blood, 2009, vol. 113, pp. 1619–1630. https://doi.org/10.1182/blood-2008-03-144790

5. Ross, T.S. and Mgbemena, V.E., Re-evaluating the role of BCR/ABL in chronic myelogenous leukemia, Mol Cell Oncol., 2014, vol. 1, no. 3, p. 963450. https://doi.org/10.4161/23723548.2014.963450

6. Järas, M., Johnels, P., Agerstam, H., Lassen, C., Rissler, M., and Edén, P., Expression of P190 and P210 BCR/ABL1 in normal human CD34(+) cells induces similar gene expression profiles and results in a STAT5-dependent expansion of the erythroid lineage, Exp. Hematol., 2009, vol. 37, no. 3. pp. 367–375. https://doi.org/10.1016/j.exphem.2008.11.003

7. Aladag, E. and Haznedaroğlu, I.C., Current perspectives for the treatment of chronic myeloid leukemia, Turc. J. Med. Sci., 2019, vol. 11, no. 49 (1), pp. 1–10. https://doi.org/10.3906/sag-1810-81

8. Colicelli, J., ABL tyrosine kinases: evolution of function, regulation, and specificity, Sci. Signal., 2010, vol. 14, no. 3, pp. 139–141.

9. Miroshnychenko, D., Dubrovska, A., Maliuta, S., Telegeev, G., and Aspenstrom, P., Novel role of pleckstrin homology domain of the Bcr-Abl protein: analysis of protein-protein and protein-lipid interactions, Exp. Cell. Res., 2010, vol. 316, no. 4, pp. 530–542. https://doi.org/10.1016/j.yexcr.2009.11.014

10. Zarbock, A., Ley, K., McEver, R.P., and Hidalgo, A., Leukocyte ligands for endothelial selectins: specialized glycoconjugates that mediate rolling and signaling under flow, Blood, 2011, vol. 22, no. 118 (26), pp. 6743–6751. https://doi.org/10.1182/blood-2011-07-343566

11. Mourelatos, Z., Gonatas, J.O., Cinato, E., and Gonatas, N.K., Cloning and sequence analysis of the human MG160, a fibroblast growth factor and E-selectin binding membrane sialoglycoprotein of the Golgi apparatus, DNA Cell. Biol., 1996, vol. 15, no. 12, pp. 1121–1128.https://doi.org/10.1089/dna.1996.15.1121

12. Crou, S., Mezitis, S.G., Stieber, A., Gonatas, J.O., Goud, B., and Gonatas, N.K., Immunocytochemical visualization of the Golgi apparatus in several species, including human, and tissues with an antiserum against MG-160, asialoglycoprotein of rat Golgi apparatus, J. Histochem. Cytochem., 1990, vol. 38, no. 7, pp. 957–963. https://doi.org/10.1177/38.7.2355176

13. Planche, A., Bacac, M., and Stamenkovic, I., The Golgi protein GLG1 participates in tumor progression, Cancer Res., 2012, vol. 72, pp. 3245–3245. https://doi.org/10.1158/1538-7445.AM2012-3245

14. Yasmin-Karim, S. and King, M.R., Messing E.M., and Lee, Y.F., E-selectin ligand-1 controls circulating prostate cancer cell rolling/adhesion and metastasis, Oncotarget., 2014, vol. 5, no. 23, pp. 12097–12110. https://doi.org/10.18632/oncotarget.2503

15. Steegmaier, M., Borges, E., Berger, J., Schwarz, H., and Vestweber, D.J., The E-selectin-ligand ESL-1 is located in the Golgi as well as on microvilli on the cell surface, Cell Sci.,1997, vol. 110, no. 6, pp. 687–694.

16. Ahn, J., Febbraio, M., and Silverstein, R.L., A novel isoform of human Golgi complex-localized glycoprotein-1 (also known as E-selectin ligand-1, MG-160 and cysteine-rich fibroblast growth factor receptor) targets differential subcellular localization, J. Cell Sci., 2005, vol. 118, pp. 1725–1731. https://doi.org/10.1242/jcs.02310

17. Steegmaier, M., Levinovitz, A., Isenmann, S., Borges, E., Lenter, M., Kocher, H.P., Kleuser, B., and Vestweber, D., The E-selectin-ligand ESL-1 is a variant of a receptor for fibroblast growth factor, Nature, 1995, vol. 16, no. 373 (6515), pp. 615–620. https://doi.org/10.1038/373615a0

18. Miyaoka, Y., Kato, H., Ebato, K., Saito, S., Miyata, N., Imamura, T., and Miyajima, A., Retention in the Golgi apparatus and expression on the cell surface of Cfr/Esl-1/ Glg-1/MG-160 are regulated by two distinct mechanisms, Biochem. J., 2011, vol. 15, no. 440 (1), pp. 33–41. https://doi.org/10.1042/BJ20110318

19. Treng, Y.T., Li, W., Chen, C.H., Zhang, S., Chen, J.W., Zhou, X.Z., and Liu, C.C., IIIDB: a database for isoform-isoform interactions and isoform network modules, BMC Genomics, 2015, vol. 16 (suppl 2), p. S10.https://doi.org/10.1186/1471-2164-16-S2-S10

20. Dunn, K., Kamocka, I., and McDonalc, J., Apractical guide to evaluating colocalization in biological microscopy, Cell Physiol., 2011, vol. 300, no. 4, pp. 723–742. https://doi.org/10.1152/ajpcell.00462.2010

21. Zinchuk, V., Zinchuk, O., and Okada, T., Quantitative colocalization analysis of multicolor confocal immunofluorescence microscopy images: pushing pixels to explore biological phenomena, Acta Histochem. Cytochem., 2007, vol. 40, pp. 101–111. https://doi.org/10.1267/ahc.07002

22. McDonald, J. and Dunn, K., Statistical tests for measures of colocalization in biological microscopy, J. Microscopy, 2013, vol. 255, no. 3, pp. 295–302. https://doi.org/10.1111/jmi.12093

23. Wadleigh, M., Daniel, J., and DeAngelo, JamesD., Griffin and Richard, M., After chronic myelogenous leukemia: tyrosine kinase inhibitors in other hematologic malignancies, Blood, 2005, vol. 105, pp. 22–30. https://doi.org/10.1182/blood-2003-11-3896

24. Antonenko, S.V., Gurianov, D.S., and Telegeev, G.D., Colocalization of USP1 and PH domain of Bcr-Abl oncoprotein in terms of chronic myeloid leukemia cell rearrangements, Cytol. Genets, 2016, vol. 50, no. 5, pp. 352–356. https://doi.org/10.3103/s009-5452716050029

25. Gurianov, D.S., Antonenko, S.V., and Telegeev, G.D., Colocalization of cortactin and PH domain of BCR in HEK293T cells and its potential role in cell signaling, Biopolym. Cell, 2016, vol. 32, no. 1, pp. 26–33. https://doi.org/10.7124/bc.000909