ISSN 0564-3783  

Main page
Information to authors
Editorial board
Mobile version

In Ukrainian

Export citations

Evaluation of the interaction between malignant and normal human peripheral blood lymphocytes under their joint-separation cultivation

urinnyi D.., Rushkovsky S.R., Demchenko O.M., Sholoiko V.V., Pilinska M..


SUMMARY. Using the Comet assay the peculiarities of the interaction between malignant and normal human peripheral blood lymphocytes under their joint-separation cultivation were investigated. A decrease in Tail Moment was observed against an increase in the frequency of cells in the state of apoptosis in the culture of lymphocytes from conditionally healthy volunteers (bystander cells) under the influence of blood cells from patients with CLL (inductor cells). A statistically significant (p < 0.001) reduction both in the frequency of cells with high levels of DNA damages and apoptotic activity was established in the population of inductor cells under the influence of the bystander cells. The results obtained indicate the realization as direct (effect of cells-inductors on bystander cells) as well as the reverse (effect of bystander cells on cells-inductors) TIBE phenomenon.

Key words: culture of human peripheral blood lymphocytes, tumor-induced bystander effect, Comet assay, DNA injuries, apoptosis

Tsitologiya i Genetika 2020, vol. 54, no. 2, pp. 45-51

  1. State institution National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, Yu. Illenka str., 53, Kyiv, 04050, Ukraine
  2. Educational and Research Center Institute of Biology and Medicine of Kyiv Taras Shevchenko National University, Vladimirska str., 64/13, Kyiv, 01601, Ukraine

E-mail: kurinnyi.d, rsr, _demchenko, vsholoyko, pww

urinnyi D.., Rushkovsky S.R., Demchenko O.M., Sholoiko V.V., Pilinska M.. Evaluation of the interaction between malignant and normal human peripheral blood lymphocytes under their joint-separation cultivation, Tsitol Genet., 2020, vol. 54, no. 2, pp. 45-51.

In "Cytology and Genetics":
D. A. Kurinnyi, S. R. Rushkovsky, O. M. Demchenko, V. V. Sholoiko & M. A. Pilinska Evaluation of the Interaction between Malignant and Normal Human Peripheral Blood Lymphocytes Under Cocultivation and Separate Cultivation, Cytol Genet., 2020, vol. 54, no. 2, pp. 124129
DOI: 10.3103/S0095452720020103


1. Rong, W., Tingyang, Z., Wei, L., and Li, Z., Molecular mechanism of bystander effects and related abscopal/cohort effects in cancer therapy, Oncotarget, 2018, vol. 9, no. 26, pp. 18 63718 647.

2. Widel, M., Radiation induced bystander effect: from in vitro studies to clinical application, Int. J. Med. Phys. Clin. Eng. Radiat. Oncol., 2016, vol. 5, pp. 117.

3. Verma, N. and Tiku, A.B., Significance and nature of bystander responses induced by various agents, Mutat. Res., 2017, vol. 773, pp. 104121.

4. Mothersill, C., Rusin, A., Fernandez-Palomo, C., and Seymour, C., History of bystander effects research 1905present; what is in a name?, Int. J. Radiat. Biol., 2018, vol. 94, no. 8, pp. 696707.

5. Redon, C.E., Dickey, J.S., Nakamura, A.J., Kareva, I.G., Naf, D., Nowsheen, S., Kryston, T.B., Bonner, W.M., Georgakilas, A.G., and Sedelnikova, O.A., Tumors induce complex DNA damage in distant proliferative tissues in vivo, Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, no. 42, pp. 17 99217 997.

6. Martin, O.A., Redon, C.E., Nakamura, A.J., Dickey, J.S., Georgakilas, A.G., and Bonner, W.M., Systemic DNA damage related to cancer, Cancer Res., 2011, vol. 71, no. 10, pp. 34373441. doi . CAN-10-4579

7. Choi, D.K., Helenowski, I., and Hijiya, N., Secondary malignancies in pediatric cancer survivors: perspectives and review of the literature, Int. J. Cancer, 2014, vol. 135, pp. 17641773.

8. Lee, J.S., DuBois, S.G., Coccia, P.F., Bleyer, A., Olin, R.L., and Goldsby, R.E., Increased risk of second malignant neoplasms in adolescents and young adults with cancer, Cancer, 2016, vol. 122, pp. 116123.

9. He, X., Wu, W., Ding, Y., Li, Y., Si, J., and Sun, L., Excessive risk of second primary cancers in young onset colorectal cancer survivors, Cancer Med., 2018, vol. 7, pp. 12011210.

10. Chen, S., Zhao, Y., Han, W., Chiu, S.K., Zhu, L., Wu, L., and Yu, K.N., Rescue effects in radiobiology: Unirradiated bystander cells assist irradiated cells through intercellular signal feedback, Mutat. Res., 2011, vol. 706, pp. 5964.

11. Kobayashi, A., Autsavapromporn, N., Ahmad, T., Oikawa, M., Homma-Takeda, S., Furusawa, Y., Wang, J., and Konishi, T., Bystander WI-38 cells modulate DNA double-strand break repair in microbeam-targeted A549 cells through gap junction intercellular communication, Radiat. Protect. Dosim., 2018, pp. 15.

12. Widel, M., Przybyszewski, W.M., Cieslar-Pobuda, A., Saenko, Y.V., and Rzeszowska-Wolny, J., Bystander normal human fibroblasts reduce damage response in irradiated targeted cancer cells through intercellular ROS level modulation, Mutat. Res., 2012, vol. 731, nos. 12. pp. 117124.

13. Verma, V. and Lin, S.H., Implications of the bystander and abscopal effects of radiation therapy, Clin. Cancer Res., 2016, vol. 22, no. 19, pp. 47634765.

14. Stamell, E.F., Wolchok, J.D., Gnjatic, S., Lee, N.Y., and Brownell, I., The abscopal effect associated with a systemic anti-melanoma immune response, Int. J. Radiat. Oncol. Biol. Phys., 2013, vol. 85, pp. 293295.

15. Muto, P., Falivene, S., Borzillo, V., Giugliano, F.M., Sandomenico, F., Petrillo, A., Curvietto, M., Esposito, A., Paone, M., Palla, M., Palmieri, G., Caraco, C., Cili-berto, G., Mozzillo, N., and Ascierto, P.A., Abscopal effects of radiotherapy on advanced melanoma patients who progressed after ipilimumab immunotherapy, Oncoimmunology, 2014, no. 3. e28 780.

16. Batson, S.A., Breazzano, M.P., Milam, R.W., Shinohara, E., Johnson, D.B., and Daniels, A.B., Rationale for harnessing the abscopal effect as potential treatment for metastatic uveal melanoma, Int. Ophthalmol. Clin., 2017, vol. 57, pp. 4148.

17. Desai, S., Kobayashi, A., Konishi, T., Oikawa, M., and Pandey, B.N., Damaging and protective bystander cross-talk between human lung cancer and normal cells after proton microbeam irradiation, Mutat. Res., 2014, vols. 763764, pp. 3944.

18. Ghosh, S., Ghosh, A., and Krishna, M., Role of ATM in bystander signaling between human monocytes and lung adenocarcinoma cells, Mutat. Res., 2015, vol. 794, pp. 3945.

19. Bazyka, D., Dyagil, I., Gudzenko, N., Chumak, V., and Romanenko, A., Leukemia in Cleanup Workers: Radiation, Professional and Lifestyle Risks. Health Effects of the Chornobyl AccidentThirty Years Aftermath, Kyiv: DIA, 2016.

20. Kurinnyi, D.À., Rushkovsky, S.R., Demchenko, O.M., and Pilinska, M.À., Peculiarities of modification by astaxanthin the radiation-induced damages in the genome of human blood lymphocytes exposed in vitro on different stages of the mitotic cycle, Cytol. Genet., 2018, vol. 52, no. 1, pp. 4045.

21. Olive, P.L. and Banath, J.P., The comet assay: a method to measure DNA damage in individual cells, Nat. Protocols, 2006, vol. 1, no. 1, pp. 2329. doi .

22. Gyori, B.M., Venkatachalam, G., Thiagarajan, P.S., Hsu, D., and Clement, M., OpenComet: An automated tool for comet assay image analysis, Redox Biol., 2014, no. 2, pp. 457465.

23. Kurinnyi, D., Rushkovsky, S., Demchenko, O., and Pilinska, M., Astaxanthin as a modifier of genome instability after γ-radiation, in Progress in Carotenoid Research, Zepka, L., Jacob-Lopes, E., and Vera De Rosso, V., Eds., London: In Tech Open, 2018, pp. 121138.

24. Rosner, B., Fundamentals of Biostatistics, Cengage Learning, 2015, 8th ed.

25. Rozovski, U., Keating, M.J., and Estrov, Z., Targeting inflammatory pathways in chronic lymphocytic leukemia, Crit. Rev. Oncol. Hematol., 2013, vol. 88, pp. 655666.

26. Saulep-Easton, D., Vincent, F.B., Le Page, M., Wei, A., Ting, S.B., Croce, C.M., Tam, C., and Mackay, F., Cytokine-driven loss of plasmacytoid dendritic cell function in chronic lymphocytic leukemia, Leukemia, 2014, vol. 28, pp. 20052015.

27. Lam, R.K., Fung, Y.K., Hun, W., and Yu, K.N., Rescue effects: irradiated cells helped by unirradiated bystander cells, Int. J. Mol. Sci., 2015, vol. 16, no. 2, pp. 25912609.

28. Burdak-Rothkamm, S. and Rothkamm, K., Radiation-induced bystander and systemic effects serve as a unifying model system for genotoxic stress responses, Mutat. Res., 2018, vol. 778, pp. 1322.

29. Yan, X.J., Dozmorov, I., Li, W., Yancopoulos, S., Sison, C., Centola, M., Jain, P., Allen, S.L., Kolitz, J.E., Rai, K.R., Chiorazzi, N., and Sherry, B., Identification of outcome-correlated cytokine clusters in chronic lymphocytic leukemia, Blood, 2011, vol. 118, no. 19, pp. 52015210.

30. Najafi, M., Fardid, R., Hadadi, G., and Fardid, M., The mechanisms of radiation-induced bystander effect, J. Biomed. Phys. Eng., 2014, vol. 4, no. 4, pp. 163172.

31. Kaltschmidt, B., Kaltschmidt, C., Hofmann, T.G., Hehner, S.P., Droge, W., and Schmitz, M.L., The pro- or anti-apoptotic function of NF-kappaB is determined by the nature of the apoptotic stimulus, Eur. J. Biochem., 2000, vol. 267, no. 12, pp. 38283835.

Copyright© ICBGE 2002-2022 Coded & Designed by Volodymyr Duplij Modified 10.12.22