|
|||
![]()
|
![]() Main page Contacts Themes Archive ![]() Themes Subscription Information to authors Editorial board Mobile version In Ukrainian Export citations UNIMARC BibTeX RIS | ![]() |
The frequency of chromosome aberrations in somatic cells of ukrainian buffaloes (Bubalus bubalis L.)
SUMMARY. The routine, GTG- and Ag-methods of metaphase chromosome analysis were used to determine the spontaneous frequency of chromosomal aberrations and the level of chromosomal variability in the lymphocytes of Ukrainian buffaloes (Bubalus bubalis L.). It was established that within the studied animal population the diploid set of chromosomes consisted of 50 chromosomess Key words: River Buffalo, karyotype, chromosomes, aberrations
Tsitologiya i Genetika 2020, vol. 54, no. 2, pp. 29-34
E-mail: valentynadzitsiuk
References1. Castello, J.R., Bovids of the World: Antelopes, Gazelles, Cattle, Goats, Sheep, and Relatives, Princeton Univ. Press, 2016, pp. 596–601. 2. Guzeev, Y.V., Melnyk, J.V., Gladyr, O.O., and Zinovieva, N.A., Polymorphism of a population of Ukrainian river buffaloes (river buffalo) for microsatellite DNA loci, Breed. Genet. Anim., 2016, vol. 51, pp. 276–281. 3. Pournourali, M., Tarang, A., and Mashayekhi, F., Chromosomal analysis of two buffalo breeds of Mazaniand Azeri from Iran, Iran. J. Vet. Sci. Technol., 2015, vol. 7, no. 1, pp. 22–31. https://doi.org/10.22067 4. Burgos, M., Rapid, A., Jimenez, R., and Diaz De La Guardia, R., Simple and reliable combined method for G-banding mammalian and human chromosomes, Stain. Technol., 1986, vol. 61, no. 5, pp. 257–260. https://doi.org/10.3109/10520298609109950 5. Supanuam, P., Tanomtong, F., Jantarat, S., Kakampuy, W., Kaewsri, S., and Kenthao, A., Standardized karyotype and idiogram of Thai native swamp buffalo, Bubalus bubalis (Artiodactyla, Bovidae) by convention staining, G-banding, C-banding and NOR-banding techniques, Thai J. Genet., 2010, vol. 3, no. 1, p. 83.https://doi.org/10.14456/tjg.2010.8 6. Iannuzzi, L., Standard karyotype of the river buffalo (Bubalus bubalis L. 2n = 50). Report of the committee for the standardization of banded karyotypes of the river buffalo, Cytogenet. Cell Genet., 1994, vol. 67, no. 2, pp. 102–113. https://doi.org/10.1159/000133808 7. Shaari, A.L., Jaoi-Edward, M., Loo, S.S., Salisi, M.S., Yusoff, R., Nurul Izza Ghani, A., Mohd Zamri Saad, M.Z., and Ahmad, H., Karyotypic and mtDNA based characterization of Malaysian water buffalo, BMC Genetics, 2019, vol. 20, no. 37, pp. 1–6.https://doi.org/10.1186/s12863-019-0741-0 8. Alikhani, J., Mohammadi, G., and Shariati, G., Cytogenetic identification of Khuzestani water Buffalo, Vet. Res. Forum, 2018, vol. 9, no. 4, pp. 357–360. https://doi.org/10.30466/vrf.2018.33075 9. Patel, A.V., Patel, R., Parth, B., Shah, R., and Priti, P., Cytogenetic studies of the dairy bulls, Wayamba J. Anim. Sci., 2011, vol. 20, pp. 190–194. 10. Kotikalapudi, R., Patel, R.K., Nagaraju Naik Sugali, and Kommuri, M., Structural chromosomal mosaicism due to partial monosomy (3q-) in a Murrah buffalo (Bubalus bubalis) bull, Int. J. Adv. Res. Dev., 2016, vol. 1, no. 9, pp. 25–27. 11. Patel, R.K., Kotikalapudi, R., Medidi, H., Nagaraju Naik Sugali, and Sancar, S., Structural chromosome mosaicism in peripheral blood cells of Murrah buffalo (Bubalus bubalis), J. Chem. Biol. Phys. Sci., 2015, vol. 5, no. 4, pp. 4224–4230. http://www.jcbsc.org/. 12. Yadav, B.R., Kumar, R., Tomar, O.S., and Balain, D.S., Monosomy X and gonadal dysgenesis in a buffalo heifer (Bubalus bubalis), Theriogenology, 1990, vol. 34, pp. 99–105. https://doi.org/10.1016/0093-691x(90)90580-m 13. Iannuzzi, L., Di Meo, G.P., Perucatti, A., Ciotola, F., Incarnato, D., Di Palo, R., Peretti, V., Campanile, G., and Zicarelli, L., Free martinism in river buffalo: clinical and cytogenetic observations, Cytogenet. Genome Res., 2005, vol. 108, pp. 355–358. https://doi.org/10.1159/000081531 14. Whitacre, L., Hoff, J., and Schnabel, R., Elucidating the genetic basis of an oligogenic birth defect using whole genome sequence data in a non-model organism, Bubalus bubalis,Sci. Rep., 2017, vol. 7, no. 39 719. https://doi.org/10.1038/srep39719 15. Albarella, S., Ciotola, F., D’Anza, E., Coletta, A., Zicarelli, L., and Peretti, V., Congenital malformations in river buffalo (Bubalus bubalis), Animals (Basel), 2017, vol. 7, no. 2, pp. 1–15. https://doi.org/10.3390/ani7020009 16. Yimer, N., Chromosomal anomalies and infertility in farm animals: a review, Pertanika J. Trop. Agricult. Sci., 2014, vol. 37, no. 1, pp. 1–18. http://psasir.upm.edu.my/ id/eprint/36786. 17. Patel, R.K., Singh, K.M., Soni, K.J., and Chauhan, J.B., Novel cytogenetic finding: an unusual X/X translocation in Mehsana buffalo (Bubalus bubalis), Cytogenet. Genome Res., 2006, vol. 115, pp.186–188.https://doi.org/10.1159/000095241 18. Chauhan, J., Patel, R., and Singh, K., Impact of a novel cytogenetic finding (unusual X;X translocation) on fertility of a buffalo bull (Bubalus bubalis), Buffalo Bull, 2009, vol. 28, no. 3, pp. 151–153. 19. Mohammadi, G., Sariati, G., and Alikhani, J., Cytogenetic identification of Khuzestani water buffalo, Vet. Res. Forum, 2018, vol. 9, no. 4, pp. 357–360. https://doi.org/10.30466/vrf.2018.33075 20. Sanghamitra, K., Patel, R.K., Sambasiva Rao, K.R.S., and Singh, K.M., Preliminary study on detection of fragile site on chromosomes of sub-fertile Murrah buffalo bull, Hary. Vet., 2004, vol. 43, pp. 68–71. 21. Iannuzzi, L., Di Meo, G., Perucatti, A., and Ferrara, L., The high resolution G- and R-banding pattern in chromosomes of river buffalo (Bubalus bubalis L.), Heriditas, 1990, vol. 112, pp. 209–215. 22. Nastyukova, V.V., Stepanova, E.I., and Glazko, V.I., Cytogenetic effects in children under different conditions of exposure to small doses of radiation, Cytol. Genet., 2002, no. 6, pp. 38–45. 23. Oraby, H.A., NahasE.l., de Hondt S.M., El Ghor H.A., and Samad M. Assignment of PCR markers to river buffalo chromosomes, Genet. Select. Evol., 1998, vol. 30, no. 1, pp. 71–78.https://doi.org/10.1186/1297-9686-30-1-71 24. Iannuzzi, L., The water buffalo: evolutionary, clinical and molecular cytogenetics, Ital. J. Anim. Sci., 2016, vol. 6, no. 2, pp. 227–236. 25. El Hondt, H.A., Soussa, S.F., Ghor, A.El., and Hassan, A.A., Assignment of new loci to river buffalo chromosomes confirms the nature of chromosomes 4 and 5, J. Anim. Breed. Genet., 2005, vol. 116, pp. 21–28. https://doi.org/10.1111/j.14390388.1999.00167.x 26. Degrandi, T.M., Pita, S., Panzera, Y., de Oliveira, E.H., Marques, J.R., Figueiró, M.R., Marques, L.C., Vinadé, L., Gunski, R.J., and Garnero, A.V., Karyotypic evolution of ribosomal sites in buffalo subspecies and their crossbreed, Genet. Mol. Biol., 2014, vol. 37, no. 2, pp. 375–380. https://doi.org/10.1590/S1415-47572014000300009 |
|
|||
Coded & Designed by Volodymyr Duplij | Modified 22.09.23 |