ISSN 0564-3783  

Main page
Information to authors
Editorial board
Mobile version

In Ukrainian

Export citations

Placenta growth factor influences miR-483-5p, miR-483-3p, miR-4669 and miR-16-5p expression in MKN-45-derived spheroid body-forming cells

Leila Khosravi, Sajjad Sisakhtnezhad, Hassan Akrami


The authors declare that they have no conflict of interest. Placenta growth factor (PlGF) is a crucial player of the human gastric cancer development. PlGF signalling pathway affects the expression of genes involving in angiogenesis and metastasis. Studies have hinted association between abnormal intracellular signal transduction and miRNAs expression profile in cancer initiation and progression. Changes in the expression of miR-483-5p, miR-483-3p, miR-16-5p and miR-4669 are reported in the spheroid body (SB)-forming cells derived from gastric cancer cell line MKN-45. Given the importance of PLGF and also the expression change of the above mentioned miRNAs in gastric cancer, this study was designed to investigate the effect of siRNA-mediated knockdown of Plgf on the expression of these miRNAs in the MKN-45 derived SB-forming cells. In addition, bioinformatics analysis was performed on the miRNAs to predict their potential targets that associated with survival, apoptosis and angiogenesis processes. Results showed that with except miR-483-3p, which was down-regulated, another 3 miRNAs were significantly up-regulated in the Plgf-knockdown samples. Furthermore, the in silico analysis revealed that these miRNAs influence the expression of a set of genes, which are involved in various signal transduction pathways. Moreover, it showed that they affect cellular processes, including proliferation, apoptosis and angiogenesis. In conclusion, the current study reveals that down-regulation of Plgf influences the miRNAs expression in MKN-45 derived SB-forming cells. Moreover, our findings indicate that miR-483-5p, miR-483-3p and miR-16-5p can induce cancer initiation and progression through targeting genes involved in the cell cycle, apoptosis and angiogenesis processes.

Key words: MKN-45 cell line, Spheroid body-forming cell, Gastric cancer stem-like cell, PlGF, miRNA, Bioinformatics analysis

Tsitologiya i Genetika 2019, vol. 53, no. 1, pp. 71-72

Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran

E-mail: s.sisakhtnezhad, ssisakhtnezhad

Leila Khosravi, Sajjad Sisakhtnezhad, Hassan Akrami Placenta growth factor influences miR-483-5p, miR-483-3p, miR-4669 and miR-16-5p expression in MKN-45-derived spheroid body-forming cells, Tsitol Genet., 2019, vol. 53, no. 1, pp. 71-72.

In "Cytology and Genetics":
Leila Khosravi, Sajjad Sisakhtnezhad, Hassan Akrami Placenta Growth Factor Influences miR-483-5p, miR-483-3p, miR-4669 and miR-16-5p Expression in MKN-45-Derived Spheroid Body-Forming Cells, Cytol Genet., 2019, vol. 53, no. 1, pp. 6067
DOI: 10.3103/S0095452719010109


1. Chen, C.-N., Hsieh, F.-J., Cheng, Y.-M., Cheng, W.-F., Su, Y.-N., Chang, K.-J., and Lee, P.-H., The significance of placenta growth factor in angiogenesis and clinical outcome of human gastric cancer, Cancer Lett., 2004, vol. 213, pp. 7382.

2. Akrami, H., Mahmoodi, F., Havasi, S., and Sharifi, A., PlGF knockdown inhibited tumor survival and migration in gastric cancer cell via PI3K/Akt and p38MAPK pathways, Cell Biochem. Funct., 2016, vol. 34, pp. 173180.

3. Park, J.E., Chen, H.H., Winer, J., Houck, K.A., and Ferrara, N., Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR, J. Biol. Chem., 1994, vol. 269, pp. 2564625654.

4. Li, B., Wang, C., Zhang, Y., Zhao, X., Huang, B., Wu, P., Li, Q., Li, H., Liu, Y., and Cao, L., Elevated PLGF contributes to small-cell lung cancer brain metastasis, Oncogene, 2013, vol. 32, pp. 29522962.

5. Hilfenhaus, G., Gohrig, A., Pape, U.-F., Neumann, T., Jann, H., Zdunek, D., Hess, G., Stassen, J.M., Wiedenmann, B., and Detjen, K., Placental growth factor supports neuroendocrine tumor growth and predicts disease prognosis in patients, Endocr. Relat. Cancer, 2013, vol. 20, pp. 305319.

6. Montano, M., MicroRNAs: miRRORS of health and disease, Translat. Res., 2011, vol. 157, pp. 157162.

7. Ma, Q., Wang, X., Li, Z., Li, B., Ma, F., Peng, L., Zhang, Y., Xu, A., and Jiang, B., microRNA-16 represses colorectal cancer cell growth in vitro by regulating the p53/survivin signaling pathway, Oncol. Rep., 2013, vol. 29, pp. 16521658.

8. Yang, T.Q., Lu, X.J., Wu, T.F., Ding, D.D., Zhao, Z.H., Chen, G.L., Xie, X.S., Li, B., Wei, Y.X., and Guo, L.C., MicroRNA-16 inhibits glioma cell growth and invasion through suppression of BCL2 and the nuclear factor-κB1/MMP9 signaling pathway, Cancer Sci., 2014, vol. 105, pp. 265271.

9. Peng, Y. and Croce, C.M., The role of microRNAs in human cancer, Signal Transduct. Target Ther., 2016, vol. 1, p. 15004.

10. Garg, M., MicroRNAs, stem cells and cancer stem cells, World J. Stem Cells, 2012, vol. 4, pp. 6270.

11. Liu, J., Ma, L., Wang, Z., Wang, L., Liu, C., Chen, R., and Zhang, J., MicroRNA expression profile of gastric cancer stem cells in the MKN-45 cancer cell line, Acta. Biochim. Biophys. Sin., 2014, vol. 46, pp. 9299.

12. Qiao, Y., Ma, N., Wang, X., Hui, Y., Li, F., Xiang, Y., Zhou, J., Zou, C., Jin, J., and Lv, G., MiR-483-5p controls angiogenesis in vitro and targets serum response factor, FEBS Lett., 2011, vol. 585, pp. 30953100.

13. Bertero, T., Gastaldi, C., Bourget-Ponzio, I., Imbert, V., Loubat, A., Selva, E., Mari, B., Hofman, P., Barbry, P., and Meneguzzi, G., miR-483-3p controls proliferation in wounded epithelial cells, FASEB J., 2011, vol. 25, pp. 30923105.

14. Bandi, N. and Vassella, E., miR-34a and miR-15a/16 are co-regulated in non-small cell lung cancer and control cell cycle progression in a synergistic and Rb-dependent manner, Mol. Cancer, 2011, vol. 10, p. 55.

15. Yan, X., Liang, H., Deng, T., Zhu, K., Zhang, S., Wang, N., Jiang, X., Wang, X., Liu, R., and Zen, K., The identification of novel targets of miR-16 and characterization of their biological functions in cancer cells, Mol. Cancer, 2013, vol. 12, p. 92.

16. Takeshita, F., Patrawala, L., Osaki, M., Takahashi, R.-U., Yamamoto Y., Kosaka, N., Kawamata, M., Kelnar, K., Bader, A.G., and Brown, D., Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes, Mol. Ther., 2010, vol. 18, pp. 181187.

17. Chen, C., Ridzon, D.A., Broomer, A.J., Zhou, Z., Lee, D.H., Nguyen, J.T., Barbisin, M., Xu, N.L., Mahuvakar, V.R., and Andersen, M.R., Real-time quantification of microRNAs by stem-loop RT-PCR, Nucleic Acids Res., 2005, vol. 33, pp. e179e179.

18. Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCT method, Methods, 2001, vol. 25, pp. 402408.

19. Loo, J.M., Scherl, A., Nguyen, A., Man, F.Y., Weinberg, E., Zeng, Z., Saltz, L., Paty, P.B., and Tavazoie, S.F., Extracellular metabolic energetics can promote cancer progression, Cell, 2015, vol. 160, pp. 393406.

20. Song, Q., Xu, Y., Yang, C., Chen, Z., Jia, C., Chen, J., Zhang, Y., Lai, P., Fan, X., Zhou, X., Lin, J., Li, M., Ma, W., Luo, S., and Bai, X., miR-483-5p promotes invasion and metastasis of lung adenocarcinoma by targeting RhoGDI1 and ALCAM, Cancer Res., 2014, vol. 74, pp. 30313042.

21. Wang, L., Shi, M., Hou, S., Ding, B., Liu, L., Ji, X., Zhang, J., and Deng, Y., MiR-483-5p suppresses the proliferation of glioma cells via directly targeting ERK1, FEBS Lett., 2012, vol. 586, pp. 13121317.

22. Cai, C. and Zhu, X., The Wnt/β-catenin pathway regulates self-renewal of cancer stem-like cells in human gastric cancer, Mol. Med. Rep., 2012, vol. 5, pp. 11911196.

23. Yang, J., Cao, Y., Sun, J., and Zhang, Y., Curcumin reduces the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells, Med. Oncol., 2010, vol. 27, pp. 11141118.

24. Veronese, A., Lupini, L., Consiglio, J., Visone, R., Ferracin, M., Fornari, F., Zanesi, N., Alder, H., DElia, G., and Gramantieri, L., Oncogenic role of miR-483-3p at the IGF2/483 locus, Cancer Res., 2010, vol. 70, pp. 31403149.

25. Bertero, T., Bourget-Ponzio, I., Puissant, A., Loubat, A., Mari, B., Meneguzzi, G., Auberger, P., Barbry, P., Ponzio, G., and Rezzonico, R., Tumor suppressor function of miR-483-3p on squamous cell carcinomas due to its pro-apoptotic properties, Cell Cycle, 2013, vol. 12, pp. 21832193.

26. Bertero, T., Gastaldi, C., Bourget-Ponzio, I., Mari, B., Meneguzzi, G., Barbry, P., Ponzio, G., and Rezzo-nico, R., CDC25A targeting by miR-483-3p decreases CCNDCDK4/6 assembly and contributes to cell cycle arrest, Cell Death Diff., 2013, vol. 20, pp. 800811.

Copyright© ICBGE 2002-2021 Coded & Designed by Volodymyr Duplij Modified 10.04.21