ISSN 0564-3783  

Main page
Information to authors
Editorial board
Mobile version

In Ukrainian

Export citations

Hemiclone diversity in the hybrid form Pelophylax esculentus-ridibundus (Amphibia, Ranidae) from the Prypyat, Dnestr and Southern Boug rivers basins

Morozov-Leonov S.Yu.


[Free Full Text (pdf)]Article Free Full Text (pdf)  

SUMMARY. The hemiclonal structure of the Pelophylax esculentus-ridibundus hybrid form from the Pripyat, Dniester and Southern Boug rivers basins is analyzed. The inter-basin and inter-population differences in the inherited genome variation level are demonstrated. The genetic diversity level of the P. esculentus-ridibundus inherited genome in the Pripyat basin is significantly lower than in the other two basins. In this case only in the Pripyat basin monoclonal populations of this hybrid form have been identified. There were no significant differences in the genetic variability level of this hybrid form between the populations of the Dniester and Southern Boug basins. The relationship between the variability level of the inherited genome of the hybrid form and the potentially possible multiple hybridization of parental species is analyzed.

Key words: Pelophylax, hybrid form, hemiclone diversit

Tsitologiya i Genetika 2019, vol. 53, no. 1, pp. 59-70

E-mail: morleone2000

Morozov-Leonov S.Yu. Hemiclone diversity in the hybrid form Pelophylax esculentus-ridibundus (Amphibia, Ranidae) from the Prypyat, Dnestr and Southern Boug rivers basins, Tsitol Genet., 2019, vol. 53, no. 1, pp. 59-70.

In "Cytology and Genetics":
S. Yu. Morozov-Leonov Hemiclone Diversity in the Hybrid Form Pelophylax esculentus-ridibundus (Amphibia, Ranidae) from the Prypyat, Dnestr, and Southern Boug River Basins, Cytol Genet., 2019, vol. 53, no. 1, pp. 4959
DOI: 10.3103/S0095452719010092


1. Gutekunst, J., Andriantsoa, R., Falckenhayn, C., Hanna, K., Stein, W., Rasamy, J., and Lyko, F., Clonal genome evolution and rapid invasive spread of the marbled crayfish, Nat. Ecol. Evol., 2018, vol. 2, pp. 567573.

2. Haileselasie, T.H., Mergeay, J., Weider, L.J., Sommaruga, R., Davidson, T.A., Meerhoff, M., Arndt, H., Jürgens, K., Jeppesen, E., and De Meester, L., Environment not dispersal limitation drives clonal composition of Arctic Daphnia in a recently deglaciated area, Mol. Ecol., 2016, vol. 25, no. 23, pp. 58305842.

3. Hasegawa, E., Watanabe, S., Murakami, Y., and Ito, F. Adaptive phenotypic variation among clonal ant workers, Roy. Soc. Open Sci., 2018, vol. 5, no. 2, pp. 170816170837.

4. Käch, H., Mathé-Hubert, H., Dennis, A.B., and Vorburger, C., Rapid evolution of symbiont-mediated resistance compromises biological control of aphids by parasitoids, Evol. Appl., 2018, vol. 11, no. 2, pp. 220230.

5. Elzinga, J.A., Jokela, J., and Shama, L.N.S., Large variation in mitochondrial DNA of sexual and parthenogenetic Dahlica triquetrella (Lepidoptera: Psychidae) shows multiple origins of parthenogenesis, BMC Evol. Biol., 2013, no. 13, pp. 9098.

6. Bonandin, L., Scavariello, C., Mingazzini, V., Luchetti, A., and Mantovani, B., Obligatory parthenogenesis and TE load: Bacillus stick insects and the R2 non-LTR retrotransposon, Insect Sci., 2017, vol. 24, no. 3, pp. 409417.

7. Dagan, Y., Kosman, E., and Ben-Ami, F., Cost of resistance to trematodes in freshwater snail populations with low clonal diversity, BMC Ecol., 2017, no. 17, pp. 4047.

8. Gibson, A.K., Delph, L.F., and Lively, C.M., The two-fold cost of sex: Experimental evidence from a natural system, Evol. Lett., 2017, vol. 1, no. 1, pp. 615.

9. Cole, C.J., Taylor, H.L., Neaves, W.B., Baumann, D.P., Newton, A., Schnittker, R., and Baumann, P., The second known tetraploid species of parthenogenetic tetrapod (Reptilia: Squamata: Teiidae): description, reproduction, comparisons with ancestral taxa, and origins of multiple clones, Bull. Mus. Comp. Zool., 2017, vol. 161, no. 8, pp. 285321.

10. Manríquez-Morán, N.L., Cruz, F.R., and Murphy, R.W., Genetic variation and origin of parthenogenesis in the Aspidoscelis cozumela complex: evidence from mitochondrial genes, Zool. Sci., 2014, vol. 31, no. 1, pp. 1419.

11. Vergun, A.A., Martirosyan, I.A., Semyenova, S.K., Omelchenko, A.V., Petrosyan, V.G., Lazebny, O.E., Tokarskaya, O.N., Korchagin, V.I., and Ryskov, A.P., Clonal diversity and clone formation in the parthenogenetic Caucasian rock lizard Darevskia dahli, PLoS One, 2014, vol. 9, no. 3, e91674.

12. Ryskov, A.P., Osipov, F.A., Omelchenko, A.V., Semyenova, S.K., Girnyk, A.E., Korchagin, V.I., Vergun, A.A., and Murphy, R.W., The origin of multiple clones in the parthenogenetic lizard species Darevskia rostombekowi, PLoS One, 2017, vol. 12, no. 9, e0185161.

13. Morgado-Santos, M., Carona, S., Vicente, L., and Collares-Pereira, M.J., First empirical evidence of naturally occurring androgenesis in vertebrates, R. Soc. Open Sci., 2017, no. 4, pp. 170200170207.

14. Zhang, J., Sun, M., Zhou, L., Li, Z., Liu, Z., Li, X.Y., Liu, X.L., Liu, W., and Gui, J.F., Meiosis completion and various sperm responses lead to unisexual and sexual reproduction modes in one clone of polyploid Carassius gibelio, Sci. Rep., 2015, no. 5, pp. 10898.

15. Warren, W.C., García-Pérez, R., Xu, S., Lampert, K.P., Chalopin, D., Stöck, M., Loewe, L., Lu, Y., Kuderna, L., Minx, P., Montague, M.J., Tomlinson, C., Hillier, L.W., Murphy, D.N., Wang, J., Wang, Z., Garcia, C.M., Thomas, G.C.W., Volff, J.N., Farias, F., Aken, B., Walter, R.B., Pruitt, K.D., Marques-Bonet, T., Hahn, M.W., Kneitz, S., Lynch, M., and Schartl, M., Clonal polymorphism and high heterozygosity in the celibate genome of the Amazon molly, Nat. Ecol. Evol., 2018, vol. 2, no. 4, pp. 669679.

16. Egan, A.N., Vatanparast, M., and Cagle, W., Parsing polyphyletic Pueraria: Delimiting distinct evolutionary lineages through phylogeny, Mol. Phylogenet. Evol., 2016, no. 104, pp. 4459.

17. Pagano, A., Lesbarreres, D., Crivelli, A., Veith, M., Lode, T., and Schmeller, D.S., Geographical and ecological distributions of frog hemiclones suggest occurrence of both General Purpose Genotype and Frozen Niche Variation clones, Zool. Syst. Evol. Res., 2008, vol. 46, no. 2, pp. 162168.

18. Hotz, H., Guex, G.-D., Beerli, P., Semlitsch, R.D., and Pruvost, N.B.M., Hemiclone diversity in the hybridogenetic frog Rana esculenta outside the area of clone formation: the view from protein electrophoresis, J. Zool. Syst. Evol. Res., 2008, vol. 46, no. 1, pp. 5662.

19. Vorburger, Ch. Non-hybrid offspring from matings between hemiclonal hybrid waterfrogs suggest occasional recombination between clonal genomes, Ecol. Lett., 2001, no. 4, pp. 628636.

20. Vorburger, Ch., Fixation of deleterious mutations in clonal lineages: evidence from hybridogenetic frogs, Evolution, 2001, vol. 55, no. 11, pp. 23192332.

21. Morozov-Leonov, S.Yu., Hemiclone diversity in the hybrid form Pelophylax esculentus-ridibundus (Amphibia, Ranidae) from the Tisa River drainage, Cytol. Genet., 2017, vol. 51, no. 6, pp. 6977.

22. Mezhzherin, S.V. and Peskov, V.N., Biochemical variability and genetic differentiation of the marsh frog Rana ridibunda Pall. populations, Cytol. Genet., 1992, vol. 26, no. 1, pp. 4348.

23. Parker, E.D., Ecological implications of clonal diversity in parthenogenetic morphospecies, Am. Zool., 1979, no. 19, pp. 753762.

24. Nei, M. and Roychoudhury, A.K., Sampling variances of heterozygosity and genetic distance, Genetics, 1974, vol. 76, no. 2, pp. 379390.

25. Dorken, M.E. and Eckert, C.G., Severely reduced sexual reproduction in northern populations of a clonal plant, Decodon verticillatus (Lythraceae), J. Ecol., 2001, no. 89, pp. 339350.

26. Quattro, J.M., Avise, J.C., and Vrijenhoek, R.C., Mode of origin and sources of genotypic diversity in triploid gynogenetic fish clones (Poeciliopsis: Poeciliidae), Genetics, 1992, no. 130, pp. 621628.

27. Nibouche, S., Fartek, B., Mississipi, S., Delatte, H., Reynaud, B., and Costet, L., Low genetic diversity in Melanaphis sacchari aphid populations at the worldwide scale, PLoS One, 2014, vol. 9, no. 8, e106067.

28. Wang, X.Y., Yang, X.M., Lu, B., Zhou, L.H., and Wu, K.M., Genetic variation and phylogeographic structure of the cotton aphid, Aphis gossypii, based on mitochondrial DNA and microsatellite markers, Sci. Rep., 2017, no. 7, pp. 19201993.

29. Zhao, C., Yang, X.M., Tang, S.H., Xu, P.J., Bian, W.J., Wang, X.F., Wang, X.W., and Ren, G.W., Population genetic structure of Myzus persicae nicotianae (Hemiptera: Aphididae) in China by microsatellite analysis, Genet. Mol. Res., 2015, vol. 14, no. 4, pp. 1715917169.

30. Fisher, R.A., The Genetical Theory of Natural Selection, Oxford: Clarendon Press, 1930.

31. Morozov-Leonov, S.Yu., Mezhzherin, S.V., Nekrasova, O.D., Kurtyak, F.F., Shabanov, D.A., and Korshunov, A.V., Inheritance of parental genomes by a hybrid form Rana esculenta (Amphibia, Ranidae), Russ. J. Genet., 2009, vol. 45, no. 4, pp. 488495.

32. Eiler, A., Löfgren, A., Hjerne, O., Nordén, S., and Saetre, P., Environmental DNA (eDNA) detects the pool frog (Pelophylax lessonae) at times when traditional monitoring methods are insensitive, Sci. Rep., 2018, no. 8, pp. 54525460.

Copyright© ICBGE 2002-2021 Coded & Designed by Volodymyr Duplij Modified 22.06.21