TSitologiya i Genetika 2019, vol. 53, no. 6, 15-25
Cytology and Genetics 2019, vol. 53, no. 6, 451–458, doi: https://www.doi.org/10.3103/S0095452719060082

Application of beta-glucuronidase transient expression for selection of maize genotypes competent to genetic transformation

Nitovska I.O., Abraimova O.Ye., Duplij V.P., Derkach K.V., Satarova T.M., Rudas V.A., Cherchel V.Yu., Dziubetskyi B.V., Morgun B.V.

SUMMARY. Genetic transformation of inbred lines and maize hybrids F1, registered in Ukraine, has been carried out. The study used a biolistic method for the genetic transformation of maize immature embryos that formed callus tissue, pAHC25 vector containing the genes of phosphinothricin-N-acetyltransferase (bar) and β-glucuronidase (uidA). As a result of the transformation of callus tissue of maize genotypes, resistant to phosphinothricin lines and regenerated plants were obtained. The activity of β-glucuronidase in herbicide-resistant calli was detected. The presence of bar gene in the calli DNA was demonstrated by PCR method. The rate of stable transformation ranged from 2,2 to 30 % depending on genotype. The relationship of transient expression results of β-glucuronidase gene and stable genetic transformation was observed. The proposed protocol for the genetic transformation of maize using a transient expression study of β-glucuronidase gene allows for a significant simplification of selection of competent to genetic transformation genotypes and creation of transgenic organisms with new traits.

Keywords: Zea mays L., immature embryos, biolistic genetic transformation, bar, uidA

TSitologiya i Genetika
2019, vol. 53, no. 6, 15-25

Current Issue
Cytology and Genetics
2019, vol. 53, no. 6, 451–458,
doi: 10.3103/S0095452719060082

Full text and supplemented materials

Free full text: PDF  

References

1. Ji, Q., Xu, X., and Wang, K., Genetic transformation of major cereal crops, Int. J. Dev. Biol., 2013, vol. 57, pp. 495–508. https://doi.org/10.1387/ijdb.130244kw

2. Lu, A., Diehn, S., and Cigan, M., Maize protein expression, in Recent Advancements in Gene Expression and Enabling Technologies in Crop Plants, Azhakanandam, K., et al., Eds., Springer Science+Business Media, LLC, 2015, pp. 3–40. https://doi.org/10.1007/978-1-4939-2202-4_1

3. Anami, S., Njuguna, E., Coussens, G., Aesaert, S., and Van Lijsebettens, M., Higher plant trans-formation: principles and molecular tools, Int. J. Dev. Biol., 2013, vol. 57, pp. 483–494. https://doi.org/10.1387/ijdb.130232mv

4. Sidorov, V.A., Plant tissue culture in biotechnology: recent advances in transformation through somatic embryogenesis, Biotechnol. Acta, 2013, vol. 6, no. 4, pp. 118–131. https://doi.org/10.15407/biotech6.04.118

5. Jefferson, R.A., Assaying chimeric genes in plants: the GUS gene fusion system, Plant Mol. Biol. Rep., 1987, vol. 5, pp. 387–405. https://doi.org/10.1007/BF02667740

6. Christensen, A.H. and Quail, P.H., Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants, Transgen. Res., 1996, vol. 5, pp. 213–218. https://doi.org/10.1007/BF01969712

7. Derkach, K.V., Abraimova, O.E., and Satarova, T.M., Morphogenesis in vitro in maize inbred lines from the Lancaster heterotic group, Cytol. Genet., 2017, vol. 51, no. 1, pp. 48–53. https://doi.org/10.3103/S00-95452717010030

8. Finer, J.J., Vain, P., Jones, M.W., and McMullen, M.D., Development of the particle inflow gun for DNA delivery to plant cells, Plant Cell Rep., 1992, vol. 11, pp. 323–328. https://doi.org/10.1007/BF00233358

9. Nitovska, I.O., Duplij, V.P., Rudas, V.A., Abraimova, O.E., Satarova, T.M., and Morgun, B.V., Optimization of the conditions of transformation of maize callus tissues by the detection of transient expression of gene of β-glucuronidase.Ach. Probl. Genet. Breed. Biotechnol., 2012, vol. 4, pp. 587–592. ISBN 978-966-171-543-0

10. Murashige, T. and Skoog, F., A revised media for rapid growth and bioassay with tobacco tissue culture, Physiol. Planta, 1962, vol. 15, pp. 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

11. Somma, M., Extraction and purification of DNA. Session 4, in Training Course on the Analysis of Food Samples for the Presence of Genetically Modified Organisms—User Manual, Querci, M., Jermini, M., and Van den Eede, G., Eds., Luxembourg: European Commission, DG Joint Research Centre, Institute for Health and Consumer Protection, 2006. ISBN 92-79-02242-3.

12. Nitovska, I.O., Abraimova, O.Ye., Satarova, T.M., Shakhovsky, A.M., and Morgun, B.V., Biolistic transformation of immature maize embryos, Fakt. Eksp. Evol. Org., Kyiv, 2014, vol. 15, pp. 112–117. ISSN 2219-3782. http://utgis.org.ua/journals/index.php/Faktory/article/ view/313.

13. McDonald, J.H., Handbook of Biological Statistics, Maryland, Baltimore: Sparky House Publishing, 2014, 3rd ed. http://www.biostathandbook.com/

14. Gordon-Kamm, W.J., Spencer, M., Mangano, M.L., Adams, T.R., Daines, R.J., Start, W.G., O’Brien, J.V., Chambers, S.A., Adams, W.R., Jr., Willetts, N.G., Rice, T.B., Mackey, C.J., Krueger, R.W., Kausch, A.P., and Lemaux, P.G., Transformation of maize cells and regeneration of fertile transgenic plants, Plant Cell, 1990, vol. 2, pp. 603–18. https://doi.org/10.1105/tpc.2.7.603

15. McElroy, D., Blowers, A., Jenes, B., and Wu, R., Construction of expression vectors based on the rice actin 1 (Act 1) 5' region for use in monocot transformation, Mol. Gen. Genet., 1991, vol. 231, pp. 150–160. https://doi.org/10.1007/BF00293832

16. Ishida, Y., Saito, H., Ohta, S., Hiei, Y., Komari, T., and Kumashiro, T., High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens,Nat. Biotechnol., 1996, vol. 14, pp. 745–750. https://doi.org/10.1038/nbt0696-745

17. Shou, H., Frame, B.R., Whitham, S.A., and Wang, K., Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation, Mol. Breed, 2004, vol. 13, pp. 201–208. https://doi.org/10.1023/B:MOLB.0000018767.64586.53

18. Brettschneider, R., Becker, D., and Lorz, H., Efficient transformation of scutellar tissue of immature maize embryos, Theor. Appl. Genet., 1997, vol. 94, nos. 6–7, pp. 737–748. https://doi.org/10.1007/s001220050473

19. Ower, R.A., Matheka, J.M., Ali, A.I.M., and Machuka, J., Transformation of tropical maize with the NPK1 gene for drought tolerance, Int. J. Genet. Eng., 2013, vol. 3, no. 2, pp. 7–14. https://doi.org/10.5923/j.ijge.20130302.01

20. Abraimova, O.E., Piralov, G.R., and Satarova, T.M., Biotechnological characteristics of callusogenesis in maize immature embryo culture under the influence of abscisic acid and 6-benzylaminopurine, Visn. Dnipropetrovsk Univ., Ser.: Biol. Med., 2010, vol. 1, no. 1, pp. 3–8. https://doi.org/10.15421/021001

21. Abraimova, O.Ye., Nitovska, I.O., Morgun, B.V., Dzhiubetsky, B.V., Cherchel, V.Yu., Derkach, K.V., and Satarova, T.M., Method of transformation and selection of maize, Patent of Ukraine for Invention no. 117974, 2018, Bull. no. 20.

22. Kennedy, M.M., Stark, H.C., and Dube, N., Biolistic-mediated transformation protocols for maize and pearl millet using pre-cultured immature zygotic embryos and embryogenic tissue, Methods Mol. Biol., 2011, vol. 710, pp. 343–354. https://doi.org/10.1007/978-1-61737-988-8_23

23. Armstrong, C.L., Parker, G.B., Pershing, J.C., Brown, S.M., Sanders, P.R., Duncan, D.R., Stone, T., Dean, D.A., De Boer, D.L., Hart, J., Howe, A.R., Morrish, F.M., Pleau, M.E., Petersen, W.L., Reich, B.J., Rodriguez, R., Santino, C.G., Sato, S.J., Schuler, W., Sims, S.R., Stehling, S., Tarochione, L.J., and Fromm, M.E., Field evaluation of European corn border control in progeny of 173 transgenic corn events expressing an insecticidal protein from Bacillus thuringiensis,Crop Sci., 1995, vol. 35, no. 2, pp. 550–57. https://doi.org/10.2135/cropsci1995.0011183X003500020045x

24. Frame, B.R., Main, M., Schick, R., and Wang, K., Genetic transformation using maize immature zygotic embryos, Methods Mol. Biol., 2011, vol. 710, pp. 327–341. https://doi.org/10.1007/978-1-61737-988-8_22

25. Wang, K. and Frame, B., Biolistic gun-mediated maize genetic transformation, Methods Mol. Biol., 2009, vol. 526, pp. 29–45. https://doi.org/10.1007/978-1-59745-494-0_3

26. Armstrong, C.L., Romero-Severson, J., and Hodges, T.K., Improved tissue culture response of an elite maize inbred through backcross breeding, and identification of chromosomal regions important for regeneration by RFLP analysis, Theor. Appl. Genet., 1992, vol. 84, nos. 5–6, pp. 755–762. https://doi.org/10.1007/BF00224181

27. Prigge, V. and Melchinger, A.F., Production of haploids and doubled haploids in maize, Methods Mol. Biol., 2012, vol. 877, pp. 161–172. https://doi.org/10.1007/978-1-61779-818-4_13

28. Satarova, T.N., Cherchel, V.Yu., and Cherenkov, A.V., Kukuruza: biotehnologicheskie i selekcionnye aspekty gaploidii (Maize: Biotechnological and Breeding Aspects of Haploidy), Dnepropetrovsk: Novaya Ideologiya, 2013.

29. Yan, G., Liu, H., Wang, H., Lu, Z., Wang, Y., Mullan, D., Hamblin, J., and Liu, C., Accelerated generation of selfed pure line plants for gene identification and crop breeding, Front. Plant Sci., 2017, vol. 8, no. 1786. https://doi.org/10.3389/fpls.2017.01786