ISSN 0564-3783  

Main page
Information to authors
Editorial board
Mobile version

In Ukrainian

Export citations

Molecular genetic evaluation of the ukrainian flax variaties homogeneity based on actin gene intronpolymorphism and microsatellite loci

Postovoitova .S., Yotka O.Yu., irko Ya.V., Blume Ya.B.


SUMMARY. The polymorphism of introns length of actin genes and microsatellite loci have been investigated for estimation of genetic homogeneity of varieties of flax of Ukrainian selection. It is established that the vast majority of varieties of flax are genetically heterogeneous. The varieties of Esman, Seversky and Glazur breeding of the Institute of Bast Crops of the NAAS of Ukraine have been genetically homogeneous by the results of analysis of the introns length polymorphism of actin genes and microsatellite markers. It has been shown that the intron length of polymorphism of actin genes is not less informative marker system for genetic profiling in comparison with popular SSR markers. Data were obtained confirming the expediency of further simultaneous use of the mentioned DNA marker systems to evaluate the genetic diversity of varieties of flax.

Key words: DNA marker, actin, intron length polymorphism, SSR (simple sequence repeats), intraspecies polymorphism, flax (Linum usitatissimum L.)

Tsitologiya i Genetika 2018, vol. 52, no. 6, pp. 71-85

E-mail: nastya.postovoytova, flaxdslk, yarvp1, cellbio

Postovoitova .S., Yotka O.Yu., irko Ya.V., Blume Ya.B. Molecular genetic evaluation of the ukrainian flax variaties homogeneity based on actin gene intronpolymorphism and microsatellite loci, Tsitol Genet., 2018, vol. 52, no. 6, pp. 71-85.

In "Cytology and Genetics":
A. S. Postovoitova, O. Yu. Yotka, Ya. V. Pirko, Ya. B. Blume Molecular Genetic Evaluation of Ukrainian Flax Cultivar Homogeneity Based on Intron Length Polymorphism of Actin Genes and Microsatellite Loci, Cytol Genet., 2018, vol. 52, no. 6, pp. 448460
DOI: 10.3103/S0095452718060099


1. Gupta, P.K. and Rustgi, S., Molecular markers from the transcribed/expressed region of the genome in higher plants, Funct. Integr. Genomics, 2004, vol. 4, no. 3, pp. 139162. doi 10.1007/s10142-004-0107-0

2. Andersen, J.R. and Lübberstedt, T., Functional markers in plants, Trends Plant Sci., 2003, vol. 8, no. 11, pp. 554560. doi 10.1016/j.tplants.2003.09.010

3. Kalendar, R., Flavell, A.J., Ellis, T.H.N., Sjakste, T., Moisy, C., and Schulman, A.H., Analysis of plant diversity with retrotransposon-based molecular markers, Heredity, 2011, vol. 106, no. 4, pp. 520530. doi 10.1038/hdy.2010.93

4. Everaert, I., Riek, J.D., Loose, M.D., Waes, J.V., and Bockstaele, E.V., Most similar variety grouping for distinctness evaluation of flax and linseed (Linum usitatissimum L.) varieties by means of AFLP and morphological data, Plant Var. Seeds, 2001, vol. 14, no. 2, pp. 6987.

5. Ranamukhaarachchi, D.G., Kane, M.E., Guy, C.L., and Li, Q.B., Modified AFLP technique for rapid genetic characterization in plants, Biotechniques, 2000, vol. 29, no. 4, pp. 858866.

6. Pali, V., Mehta, N., Balkrishna, V.S., Xalxo, M.S., and Saxena, R.R., Molecular diversity in flax (Linum usitatissimum L.) as revealed by DNA based markers, Vegetos, 2015, vol. 28, no. 1, pp. 157165. doi 10.5958/ 2229-4473.2015.00022.1

7. Fu, Y.B., Redundancy and distinctiveness in flax germplasm as revealed by RAPD dissimilarity, Plant Genet. Res., 2006, vol. 4, no. 2, pp. 117124. doi 10.1079/ PGR2005106

8. Simmons, M.P., Zhang, L.B., Webb, C.T., and Müller, K., A penalty of using anonymous dominant markers (AFLPs, ISSRs, and RAPDs) for phylogenetic inference, Mol. Phylogenet. Evol., 2007, vol. 42, no. 2, pp. 528542. doi 0.1016/j.ympev.2006.08.008

9. Pali, V., Verma, K.S., Xalxo, M.S., Saxena, R.R., Mehta, N., and Verulkar, S.B., Identification of microsatellite markers for fingerprinting popular Indian flax (Linum usitatissimum L.) cultivars and their utilization in seed genetic purity assessments, Austral. J. Crop Sci., 2014, vol. 8, no. 1, pp. 119126.

10. Singh, P., Mehta, N., and Sao, A., Genetic purity assessment in linseed (Linum usitatissimum L.) varieties using microsatellite markers, Suppl. Genetics Plant Breed., 2015, vol. 10, no. 4, pp. 20312036.

11. Varshney, R.K., Mahendar, T., Aggarwal, R.K., and Borner, A., Genetic molecular markers in plants: development and applications, Genomics-Assisted Crop Improvement, 2007, vol. 1, pp. 1329. doi 10.1007/978-1-4020-6295-7_2

12. Wang, X., Zhao, X., Zhu, J., and Wu, W., Genome-wide investigation of intron length polymorphisms and their potential as molecular markers in rice (Oryza sativa L.), DNA Res., 2005, vol. 12, no. 6, pp. 417427. doi 10.1093/dnares/dsi019

13. Väli, U., Brandström, M., Johansson, M., and Ellegren, H., Insertion-deletion polymorphisms (indels) as genetic markers in natural populations, BMC Genet., 2008, vol. 9, no. 1, p. 8. doi 10.1186/1471-2156-9-8

14. Postovoitova, A.S., Bayer, G.Ya., Pydiura, N.A., Pastukhova, N.L., Pirko, Ya.V., Yemets, A.I., and Blume, Ya.B., Search and analysis of sequences of the actin genes in flax genome, Sci. Rep. NULES Ukraine, 2015, vol. 8, no. 57.

15. Bardini, M., Lee, D., Donini, P., Mariani, A., Giani, S., Toschi, M., Lowe, C., and Breviario, D., Tubulin-based polymorphism (TBP): a new tool, based on functionally relevant sequences, to assess genetic diversity in plant species, Genome, 2004, vol. 47, no. 2, pp. 281291. doi 10.1139/g03-132

16. Pirko, Ya.V., Studying of genetic diversity different species of plants by analyzing polymorphism of introns of β-tubulin genes, Industr. Bot., 2011, vol. 11, pp. 152156.

17. Braglia, L., Manca, A., Mastromauro, F., and Breviario, D., cTBP: a successful intron length polymorphism (ILP)-based genotyping method targeted to well defined experimental needs, Diversity, 2010, vol. 2, pp. 572585. doi 10.3390/d2040572

18. Rabokon, N., Pirko, Ya., Demkovych, A., and Blume, Ya., Intron length polymorphism of betatubulin genes as an effective instrument for plant genotyping, Mol. Appl. Genet. (Minsk), 2015, vol. 19, pp. 3544.

19. Postovoitova, A.S., Pirko, Ya.V., and Blume, Ya.B., The second intron length polymorphism of actin genes in Linum usitatissimum L. genome, Factors Exp. Evol. Organisms, 2016, vol. 19, pp. 3842.

20. Kvavadze, E., Bar-Yosef, O., Belfer-Cohen, A., Boaretto, E., Jakeli, N., Matskevich, Z., and Meshveliani, T., 30,000-Year-old wild flax fibers, Science, 2009, vol. 325, no. 5946, pp. 13591367. doi 10.1126/ science.1175404

21. Jhala, A.J. and Hall, L.M., Flax (Linum usitatissimum L.): current uses and future applications, Austral. J. Basic Appl. Sci., 2010, vol. 4, no. 9, pp. 43044312.

22. Murashige, T. and Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiol. Plant, 1962, vol. 15, pp. 473497.

23. Sambrook, J.F. and Russell, D.W., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, 2001.

24. Rahman, M.H., Jaquish, B., and Khasa, P.D., Optimization of PCR protocol in microsatellite analysis with silver and SYBR stains, Plant Mol. Biol. Rep., 2000, vol. 18, no. 4, pp. 339348.

25. Kondratyuk, A.V., Kilchevsky, A.V., and Kuzminova, E.I., Microsatellite loci polymorphism analysis of Belarussian and foreign breeding potato varieties, Mol. Appl. Genet. (Minsk), 2005, vol. 13, pp. 2429.

26. Rabokon, A.N., Pirko, Ya.V., Demkovych, A.Ye., and Blume, Ya.B., Comparative analysis of the efficiency of intron-length polymorphism of -tubulin genes and microsatellite loci for flax varieties genotyping, Cytol. Genet., 2018, vol. 52, no. 1, pp. 110. doi 10.3103/ S0095452718010115

27. Pydiura, N., Pirko, Ya., Galinousky, D., Postovoitova, A., Yemets, A., Kilchevsky, A., and Blume, Ya., Genome-wide identification, phylogenetic classification, and exonintron structure characterisation of the tubulin and actin genes in flax (Linum usitatissimum), Cell Biol. Int., 2018. doi 10.1002/cbin.11001

Copyright© ICBGE 2002-2021 Coded & Designed by Volodymyr Duplij Modified 22.06.21